
Change color scheme

This function requires cookies.

If the browser does not accept cookies,

the light theme is used always.
RUSSIAN(Русский) ENGLISH

Content

Introduction

A programming language AL/IV is a
 minimal
 imperative
 object oriented
 platform independent
high-level programming language
 with static types,
claiming to a very high level of safety and stability
 of a controllable level of code protection.

Important semantic things of the language are:
NONE-objects instead of NULLs

• fields of NONE objects are always equal to NONE.

• Writing to fields of NONE-objects is ignored.

• Reading of fields gives always zeroes and NONE-objects of
correspondent types.

• NONE-objects are returned in a case when arrays are accessed
out of the array bounds,

• and when the object referenced was lost.

• All object variables are always initialized with NONE

• and never have value NULL.

Separating references to objects onto strong (owning) and weak_ (using)
references

• Strong references can not be used to create closed link chains
between objects.

• Garbage collection is not necessary at all.

• All objects are automatically destroyed when its usage (by
strong references) counters becomes zero.

• When the object is destroyed, all weak references onto it
immediately become referencing to NONE objects of corresponding
class.

• New objects must be addressed either a strong pointer reference
or an existing object should be specified becoming an owner of the
creating object.

Total thread data isolation from other simultaneously executing threads
• Special mechanisms to provide exclusive access to shared data
are not necessary.

• A thread can access only its own objects and even does not see
objects of other threads.

• There are not possible deadlocks due to data access conflicts.

• There are no global variables so there are no problems with
simultaneous access them from different threads.

Detection of infinitive loops and endless recursions
• Loops are possible only in form
FOR var IN arr[] : ...
(there are no loops like WHILE / REPEAT-UNTIL). There are loops
FOR, INFINITE, but its usage is restricted hardly. Any loop FOR is
finished obligatory, so infinitive looping become impossible.

• Recursive functions always are marked with a modifier
RECURSIVE , and a recursion deep is controlled: in case of danger
of too deep recursion an immediate return to the first level of the
recursion in the calls chain is performed and it returns NONE
value.

PUSH statement for variables and objects
• In a PUSH statement for a variable its value is stored and new
value can be assigned.

• On a block end, stored value of a variable is restored always.

Parameters passed by value, can not be changed in a function
• Reusing input parameters to store intermediate values is not
allowed.

• Value of a scalar parameter can not be changed until the
function ends.

• For an array parameter it is allowed to change items, and for
dynamic arrays - adding and deleting items.

"Read only" fields and module variables
• Simplifies creating of "properties" which can be modified only
by the owner (class and its descendants).

Page 1 from 51

28.12.20221

Enumerations and collections
• These are very similar to enumerations and sets in Pascal-like
languages.

• These allow to work with named constants and flags.

• It is possible to use Boolean arrays with such enumerations as
indexes to implement collections of flags.

• Enumeration items are included into apostrophes.

• The CASE statement with an enumeration as a condition requires
to list all possible values in its branches. If a enumeration used
in CASES was extended with new values, the compiler is complaining
on all the CASE statements where such new values are not yet
listed.

There are no handling exception instruments
• Passing control to a top level recursive function when a maximal
allowed level of a recursion is achieved is performed only to speed
up malfunction detection and to prevent stuck of execution in case
of a big amount of nested loops.

• Most of errors are ignored by replacing a supposed result with
the NONE value.

• In case of errors (working with files, exceptions in native
code, etc.) these are collecting (in a system array of errors) and
later can be handled in the code.

Testing engine embedded to the language
• TEST functions allows to test code.

• Covering of the code by tests is measured by the compiler.

• A unit insufficiently covered by tests must be marked by the
modifier UNTESTED.

It is possible to redefine arithmetic operations
• Only arithmetic operations can be redefined (+, -, *, /).

• Any function using redefined operators, must declare in its
header a list of classes where such operators are from.

Important syntax things of the language are:
One class - one module

• Each source text file contains a single class definition.

• All public names and function parameters have names starting
from uppercase letter, all the hidden names and local variables are
starting from a lowercase letter.

• Underlining at the end of a name is used only for object fields
of class which are weak references to the object.

Double naming of types, variables, functions, constants
• Most of objects (variables, functions, data types, enumeration
items) have several names.

• In declarations, full name is separated onto pars via a '|'. The
first part before '|' is representing a short name of an item.

• Additionally, other variants of the name can be specified after
the separator symbol '||'. The first symbol in chains should be the
same (though the letter case can be different). E.g.,
Name|_first|_variant || nam|e

• All named things (excluding FOR loop variables) should have long
names (at least 8 characters).

• Language keywords are written in the uppercase and can not be
used to name functions or variables.

Names of classes, enumerations and records are always written in figure
brackets

• The are 5 simple data types: BOOL, BYTE, INT|EGER, REAL,
STR|ING.

• Classes and enumerations are named using figure brackets, e.g.
{My|_class}.

• Classes have names in figure brackets starting from uppercase.
Enumeration and record names are always starting from a lowercase
letter.

• Type like "char" is not present (STR is used).

• Implicit conversion is allowed only for converting BYTE to INT,
and INT to REAL.

Source code string length restriction
• Source code should not contain lines with length greater then 80
characters (not taking into account comments and ending spaces, and
accounting tabulating symbols as spaces).

• The rule is not affecting lines after the final directive END
and to lines located in long comments */ ... */.

A rule to continue line of code
• There is no a special symbol to end a simple statement. The
semicolon symbol ';' is used to finish block statements CASE, FOR
and so on.

• A statement usually occupies a single line of code.

Page 2 from 51

28.12.20222

• A line of code is continuing in the next line if it is ending
with one of character ',', '(', '['

• or if the next line is not empty and do not start new statement,
i.e. it is not start from '{', '<', '[' or a letter,

• and it is not ending a block or a function, i.e. it is not
starting from symbols ';', '.'

Static function with a single parameter can be called always in a
postfix form

• Calling in form sin(x) can be always replaced with x.sin()

Arrays are always used together with its square brackets: A[]
• Only single dimension arrays are present.

• An array can be either dynamic or a fixed.

• For fixed arrays enumerations can be used as indexes (as data
types).

A line of code contains only a single statement
• Symbol ';' is used to end a block statement (CASE, FOR ,
PUSH, DEBUG, SILENT).

• Symbol '.' is ending a function, a enumeration, a constant
block or an import list.

• Ending symbol ';' or '.' must be the last such symbol in a
line (so, two semicolons are not possible but '; .' is allowed
at the end of the last line in a function).

• Any simple statement (except BREAK , CONTINUE or STOP) can
have a statement '==>' attached (return from a function
statement).

Restrictions on a code quality:
• It is allowed not more then 3 nested levels of block
statements CASE / FOR (though this is not concerning statements
PUSH, DEBUG, SILENT).

• It is allowed the fourth level FOR / CASE , but having a
single nested statement only.

• It is allowed not more then 7 simple and 7 block statements
in a single block, after that a block comment is required
--------- 'comment'

• In case of abandoning any of rules listed above, a class
must be marked with a bad code modifier (BAD).

Overloading operators
• It is possible to redefine basic arithmetic operators for
classes and record. Using redefined operators is declaring in a
function header.

The language has lack of:
Preprocessor

• There are no non-typed macros

• EXCLUSION: there is a LIKE statement, but it is restricted and
can not be used nested or out of class bounds.

• There are no conditional compilations.

• There are no file includes.

Function pointers
• There are no function pointers. Use instead virtual methods.

Array as a result of a function
• Function can return only a scalar value.

• If it is necessary to return an array, the result is passed is a
parameter.

Multiple inheritance
• Class can be inherited only from one ancestor class.

go to statement
• It is possible to continue or break a loop from a deeply nested
block (CONTINUE x , BREAK y).

Character data type
• To represent characters, string variables and constants of
length 1 are used.

Precision specification for simple data type variables
• Precision is not specified.

• It is always same for embedded data types INT and REAL, and
depends on a target platform and project settings (for integer
variables except loop counters: 64 bits, but with key /int32 - 32
bits).

Implicit type conversions for distinct data types
• There are no implicit data type conversions except converting
INT to REAL (or converting to strings in the out to console
operators <<).

• There are no type casts.

Handling exceptions
• Exceptions due to an incorrect addressing or corrupting data
in memory are practically not possible (because of using NONE

Page 3 from 51

28.12.20223

objects, instant initializations of variables, checking arrays
bounds).

• In most cases when in other environments an exception is
generated, in AL/IV no actions are fired, and an empty result
is returned (NONE).

• So, exception handling is not required, so exception
handling is not provided.

I. Syntax

I. 1. a. Continue statement lines

Statements need not any finalization symbol (like ';').
Symbol ';' is used to finish a block of statements.
E.g.:

d|escriminant = B * B - 4 * A * C
CASE d.Sign ?
 [-1]: NONE
 [0] : R[] << -B / 2 / A
 [+1]: R[] << (-B - d.Sqrt) / 2 / A
 R[] << (-B + d.Sqrt) / 2 / A ;

A line of a code should not exceed 80 characters (without ending comments
and spaces and tabulations).

Statement can be continued in several lines only in following cases:

• a line is finished with ',', '(', '[';

• the next line is starting with one of symbols (without quotas):
◦ '"' (double quotas - starts string constant)

◦ '+'

◦ '-' (single only, not '--')

◦ '*'

◦ '/'

◦ '%'

◦ '|'

◦ '&'

◦ '>'

◦ '<' (but not '<<')

◦ '='

◦ '#'

Another way to remember the rule is that a statement is continued only if:

• either the previous line is finished by one of symbols '(', '[', ','

• or the next line is not empty and it can not a start of a new
statement, that is, it is not start from:

◦ a letter,

◦ a symbol '{' (not a variable declaration),

◦ a symbol '[' (not a condition for a CASE statement),

◦ a symbol '<<' (not an output to console statement),

◦ symbols '.' or ';' (it is not a separate ending of a code block or
a function),

◦ a symbol '--' (it is not starting a block comment).

Or use the following figure:

Page 4 from 51

28.12.20224

To simplify understanding code containing long lines of code with
continuations onto another lines, it is recommended to separate all such lines
from other lines in blocks with empty lines. (The compiler warns about such
possibility).

I. 1. b. Block statements

Block statements always are starting in a new line.
Nesting statements block is ended with the symbol ';'.
Functions and other blocks of a class level are ending with a symbol '.'.

Such blocks are: a class header, an import list, enumeration declaration,
constants definition block. (Though it is allowed to use ';' for an import
list, too).

The last line in a nested block can not be ended with two same ending
symbols ';' or '.'. But it is allowed to end nesting block with its upper
leveled function by two symbols ';.' at the end of the last line in the
function.

So, if it is required to finish two nesting blocks, then the ending symbol
of the external block will be placed in a separate line of code. E.g.:

FOR i IN [1 TO 100] :
CASE i % 3 == 0 ? << "Fizz" ;
CASE i % 5 == 0 ? << "Buzz" ;
CASE i % 3 != 0 && i % 5 != 0 ?

 << i.Str ;
;

There is only a single keyword for a conditional statement (CASE), a
single keyword for a basic loop statement (FOR), a single save and restore
statement (PUSH). There is also an infinitive loop statement (FOR, INFINITE)
using it is restricted. For debugging, special blocks DEBUG can be used
also. To suppress compiler warnings (e.g. about existing DEBUG statements)
the block SILENT can be used. To restrict time of executing of some code the
block LIMIT can be used.

All other statements are simple: BREAK, CONTINUE, STOP, LIKE , REVERT,
function calls, variable declarations and modifications, input and output
(>>, <<), exit form a function (==>). The BREAK statement can be used only to
exit a FOR loop and not for any other purposes.

A compiler requires to mark with a modifier BAD classes in which rules of
code structuring are not satisfied:

• Number of nested levels of block statements CASE and FOR should not
exceed 4 (blocks PUSH / DEBUG are not considered). The fourth nesting
level can contain only a single simple statement (or a concatenation of
a simple statement and a return from function sign ==>).

• Number of simple statement in a section of a block should not exceed 7.

• Number of nested block statements in a section of a block also should
not exceed 7.

Page 5 from 51

28.12.20225

• A special block comment
--------- 'text'
can separate groups of statements (number of signs '-' at least 2)
treated as sections in a block.

I. 1. c. Comments

• Multi-line comments: starting brackets are always placed at the begin of
a line (may be following leading spaces) from the symbol
*/
and finishing with a string
started from symbols
/*

• A text file containing the AL-IV source code is always treating to be
started from multi-line comments. A line containing at the end the
symbol /* becomes the end of such leading comments lines. I.e. the AL-IV
code should be located always between lines with symbols /* and */ (as it
would be comments for some C-like programming language around).

See the figure:

• Comment to the end of line (start from //). Such comments do not finish
current statement.

• Comments starting with two minuses:
----------- 'text'
are used to separate blocks of code onto sections. These also are used in
class declarations and in module headers.
A block comment statement can start a reused block of code (in statements
LIKE / REVERT). In such case it should have a modifier REUSED (which is
written after the label comma separated). E.g.:
--------------- 'start extracting ', REUSED

I. 1. d. Case sensitivity for keywords, types and other identifiers
• KEYWORDS can be written in the UPPER case only.
CASE if a keyword but case, cAsE and Case - not.

• {Type names} are enclosed into figure brackets.

• simple type names are reserved keywords: BOOL, BYTE, INT, REAL, STR (and
there no simple types except these 5 listed here).

• {Class names} are starting from uppercase letters.

• {enumeration_and_structure} names are starting from lowercase letters.

Type names create a name space not intersecting other names at all.
• CONSTANT names are case sensitive.

It is desired to be written CAPITALIZED.

• Names of 'CONSTANTS' which are items of enumerations are always enclosed
into apostrophes.

• Variable and field names (of structures and classes) are case sensitive.

So, A and a are different variables (or constants).
Names of Public fields, functions, variables, types are always starting

from a capital letter.
All other names are local in a module. (This does not concern local

variables which are always local in its functions and can be written from any
case).

• The underscore at the end of a name_ is an integral part of the name (and
used as a marker of a pointer to a structure or of a weak pointer to an
object).

Page 6 from 51

28.12.20226

I. 1. e. Naming

While declaring a variable, a function, a data type, a table or an
enumeration item it's long name can be separated by the symbol '|' onto parts,
the first of which is a short name. Also, the symbol '||' can be used to define
another name chain, and so on. It is therefore required that all such chains
should start from the same letter (though letter case can be different).

There are following rules:

• At least one whole name length should not be less then 8 characters:
S|ample|_val (the variable can be referenced by names S, Sample and
Sample_val);

• The exclusion for variable names: FOR loop variables can have only short
name, even short, e.g.:
FOR x IN M[] : ... ;

• Another exclusion: if for the variable while declaration the attribute
INDEXING is provided, it is enough for it to have only short name:
INT k INDEXING {record}

• If a name should be finished by an underscore character (which is a mark
for a weak reference in the AL-IV), then both variants of the name should
be ended with the underscore, e.g.:
List_|of_items_ || L_items_ []

• For class names, records and enumerations the same rule is active, and
figure brackets and split symbols '|' are not accounting in names
lengths:
{My|_class}, 8 symbols in the name.

Functions names, variables, fields names (of classes and structures), table
names and names of enumeration items are identifiers starting from a letter.

Names of {Classes} are identifiers enclosed by figure brackets and starting
from a capital letter.

Names of {structures} and {enumerations} also are identifiers in figure
brackets but starting from a lowercase letter.

Enumeration 'ITEMS' are written in apostrophes. Still these are constants
it is recommended to use CAPITALIZED names.

I. 1. f. Modifiers

Many language declarations (module header, statement, variable of data type
declaration) can have modifiers.

• Modifiers are written in form , NAME at the end of a declaration
(usually).

• If there are several modifiers then these are listed via ','.

• Modifiers are written in the upper case. E.g.:

CLASS {My|_class} , BITWISE, RECURSIVE :

Modifiers do not affect main code semantics.
These just help to compiler to provide more security and sometimes help to

optimize resulting code.
If to remove all modifiers in a ready program (and suppose that a language

do not require it), this (usually) do not change a result of the program (but
can take an effect of changing its size / working speed, either increasing or
decreasing it).

In some cases a presence of some identifier in the name of a variable
itself is used as a "modifier". E.g., the word "dummy" as a part of a name can
be used to prevent the compiler to warn about a variable which is not used in
code. And the word temp in a local variable name determines for the compiler
that the variable is a temporary and it is not necessary to warn the programmer
about assigning a new object to that variable only.

I. 2. a. Simple assignment statement
x = y
where x is a variable or a field of a structure or an object and y is an

expression.

To compare for equality of two operands a "C"-like operator == is used. (In
SQL-expressions therefore it is allowed to use '=' sign to compare for
equality).

I. 2. b. Assignment in combination with arithmetic, logic or bitwise

operation

Additional operations +=, -=, *=, /=, %=, |=, &=, ^=, ||=, &&= can be used
as an equivalent of the assignment of a result of a correspondent operation +,
-, *, ... between the variable left to the symbol of the operation and the
right-sided expression.

I. 2. c. Data sending operations

Page 7 from 51

28.12.20227

Operation << is used to append a string to a string or to append an item to
an array, or to output text to a current output console.

• For a string variable A and a string expression B, a statement A << B is
equal to A = A B

• In case of an array A[] and an expression B, statement A[] << B means
adding an item to the end of the array and it is equal to a function call
A[].Add(B)

• If the left operand is an object of a class having the method Write
(accepting a string) then it is called passing the result of the right
(string) expression as a parameter;

• If a structure is on the left side but the right object is of a class
having the method Read (returning a structure), then the method is called
then as in the previous item;

• If the left operand is not present, then such statement means writing a
string to an output stream (to the console for a console application).

A similar operation >> is used to add a newly created object to an objects
array, see in a section devoted to classes and objects.

Additionally, right to the >> operator a declaration of a new variable can
be specified.

• Input-output operators << and >> can be combined in a single statement in
a form:
<< string [>> variable] [>>variable] ...
E.g.:
<< "Enter number:" >> REAL Number|_entered

I. 2. d. Repeating assignment and sending data operators

If a statement is starting from a symbol '..' (without quotas), then this
represents a reference to the left side of the previous assignment statement.
So, three dots are meaning such reference with a following "dot operation" used
to either name a field or a method of an object or to name a function giving
the operand referred by the '..' symbol as the first parameter.

For such repeating assignment statement (or data sending statement):

• statements are not counting as simple or nesting (there are no
restrictions on such repeating assignments);

• an expression is fixed to be a destination for following repeating
assignments if:

◦ it is used as the left side of a usual assignment (a = b, a += b,
a *= b etc.);
E.g.:
Text = New_memo(THIS, "TEXT", "VH")
...Set_width(200) // equal to Text.Set_width(200)
...Set_anchor_bottom(TRUE) // same as Text.Set_anchor_bottom(TRUE)

◦ it is used as a destination in a usual sending data statement (a
<< b, a[] << b), including a case when the sending operator is
replacing a method Write call;
E.g.:
Lines[] << "#!/bin/bash"
..[] << "echo run WinE"
..[] << "wine"

◦ if a pseudo-operator '...' is used in place of a single "dot"
operation in a chain of unnamings / indexing operations applied to
an expression. E.g.:
A.Field1[indexA]...Do_something(params)
...Color = RED
...Foo(params)

In the example above, in two last lines, the symbol '..' is
replaced by a compiler with an expression A.Field1[indexA]

Priority Operator Description Group

1 - Negation Arithmetic operations (with

numbers), result is a number 2 * / % Multiplication, division, rest of division

3 + - Adding, subtracting

4 IN !IN Check for presence a value in a set or

array, check for an object belonging to a

class

Comparing numbers, strings,

classes, result is Boolean or

integer

5 LIKE !LIKE Compares two strings without case

sensitivity and interpreting special

symbols '?' and '%' in the second

operand as patterns 'any character' and

'any amount of any symbols'

6 < <= > >= == != <> Comparisons

7 ~ Bitwise NOT Bitwise operations with

integers, result again is

integer
8 & ^ Bitwise AND, eXclusive OR(xor)

9 | Bitwise OR

10 ! Logical NOT

11 && Logical AND

Page 8 from 51

28.12.20228

Logical operations with

Boolean, result also is

Boolean

12 || Logical OR

• Concatenation operation has no special sign (just write operands
sequentially).

• If any bitwise operations are used in a module, then a modifier BITWISE
must be added for the module.

• Using both bitwise and arithmetic operations in the same expression is
not allowed.

• bitwise shift and rotate operations are implemented with embedded
functions ShiftL|eft, ShiftR|ight, RotateL|eft, RotateR|ight, there are
no separate binary operation signs for them.

• it is allowed to write chains of comparisons.
a < b <= c == 1 > d is the same as:
a < b && b <= c && c == 1 && 1 > d

I. 3. a. Checking the presence of an item

Operators IN and !IN can be used in expressions:

• for checking if a scalar value is present in an array of values (and an
array to the right can be either an array variable or a construction in
form
[value1, value2, ..., valueN])

• to check is a substring is present in a string

• also in SQL-expressions the operation IN can be used (but for opposite
operation, SQL syntax is used: NOT IN)

In case of a constructed array, all its items must be constant expressions.
And in case when the left value is a string, it is not allowed to construct an
array from a single string value. Either a string should be to the right of
IN / !IN (the case 2).

Operations IN / !IN are not applicable to REAL numbers (still it is not
allowed to compare REAL values for equality/inequality).

• To return from a function before its code ends, a statement ==> used.
◦ Such statement can be written either separately or following
another simple statement (in the same line of code).
E.g.:

CASE R > 0 ? RESULT = R ==> ;

• To terminate or continue a loop forcibly, keywords BREAK and CONTINUE
can be used, together with a loop label, e.g.:

FOR x IN [1 TO 100] :
 do_something

CASE condition ? BREAK x;
;

• It is not allowed to use BREAK / CONTINUE in the FOR, INFINITE loop. It
is only possible to terminate such loop by the return statement (==>) or
in result of an exception firing.

• Using a label in BREAK / CONTINUE statements allows to continue or
terminate an outer loop from an inner loop directly (but it is necessary
to write first BREAK statements for all the nested loops first:
BREAK k, BREAK j, CONTINUE i)

• An expression in the CASE statement should be of Boolean, integer,
enumerated or string type.

• Expressions of other types (e.g., REAL, structures, objects, etc.) are
not allowed.

• The header is always finished by the symbol '?'.

• In case of the Boolean condition, a block of code follows which is
executed in case when the condition is true. And an ELSE block can be
following (see below).

• In other cases each branch is starting from a constant array of constant
values in square brackets:
[array of values]: code

• Constants (literal or named) should be listed in the array having a type
correspondent to the type of the condition in the header.

• The value can be a single, or it can be represented with a list of
values, or by a range X TO Y (which is allowed in case of integer
condition).

• All the items in all sets or arrays must be distinct.

• In case of enumerated condition, all the enumeration items must be listed
in arrays starting branches, and in such case it is not allowed to use
ELSE branch.

Page 9 from 51

28.12.20229

• If a common part ELSE is present, it is executed if the expression in the
header were not matching any constant listed, and there was no a branch
executed.

• Usually the ELSE keyword is starting a new line. But it is allowed to
place it in the same line as the CASE statement if the entire CASE
statement fits a single line (80 symbols). In such case the ELSE keyword
must be separated from the previous statement (then-clause) by spaces;

• Symbol ';' ends entire CASE block, together with all its branches and
ELSE clause.

A BREAK statement is not used to finish a branch.
After any branch execution entire CASE statement is finished.

Classic example - solving a square equation for real numbers:

STRUCTURE {roots_sq|uare_equation} :
INT N|umber_solutions
REAL X1|_solution
REAL X2|_solution .

FUNCTION Square_eq|uation(
REAL A|_coefficient,
REAL B|_coefficient,
REAL c|_coefficient) ==> {roots_sq}

 :
CASE A.Near(0) ? ==> ;
REAL d|escriminant = B * B - 4 * A * C
CASE d.Sign ? [0]: RESULT.N = 1

RESULT.X1 = -B / (2 * A)
RESULT.X2 = RESULT.X1

 [1]: d = d.Sqrt
RESULT.X1 = (-B - d) / (2 * A)
RESULT.X2 = (-B + d) / (2 * A)
RESULT.N = 2 ; .

Especial version of the CASE ? statement - with a condition in the header
but with sequential calculation of conditions in square brackets until either
the first one is found with value TRUE (in such case a correspondent branch is
executed only), or until the ELSE part (or the end of the CASE statement) is
found.

In such case symbols '?' are written after each expression rather then ':'.

FUNCTION Square_eq2|uation(
REAL A|_coefficient,
REAL B|_coefficient,
REAL c|_coefficient) ==> {roots_sq}
 :

----------------------- 'sequentional version'
REAL d|escriminant = B * B - 4 * A * C
CASE ?

 [A.Near(0)]? ==>
 [d.Near(0)]? RESULT.N = 1

RESULT.X1 = -B / (2 * A)
RESULT.X2 = RESULT.X1

 [d > 0] ? d = d.Sqrt
RESULT.X1 = (-B - d) / (2 * A)
RESULT.X2 = (-B + d) / (2 * A)
RESULT.N = 2 ; .

Also there is a special variant CASE ? purposed to use in generic
functions. See detailed in a correspondent section.

 A loop statement FOR enumerating array items or a range values - is a
single possible controlled loop statement:

FOR variable IN array[range] : body ;
or

FOR variable IN [range]: body ;
or

FOR variable ENUM|ERATE method: body ;

• The loop variable of such loop statement is always has the same type as a
enumerating array items data type.

• In case of a range without an array, the variable type is integer;

• It:

◦ Does not require declaration.

◦ Does not require a long synonym.

◦ Can not be used out of the loop, except in another FOR loop.

Page 10 from 51

28.12.202210

◦ It is used as a label in statements BREAK variable and
CONTINUE variable, related to the loop.

• A variable of a FOR loop with a range can not be changed in a loop body
(and used as a usual variable).

• In case of empty range all the items are enumerated from the start (index
0) to the end (index *).

• To indexes change direction and bounds, it is necessary to use an
explicit range of indexes of an array or a range without an array:
[X TO Y] or [Y DOWNTO X], where X and Y are integer expressions.

• In case of a loop on an array items, it is possible to apply an embedded
function INDEX to it (it returns an index of the variable in the
enumerating array).

• Bounds of indices enumerating are calculated before the loop, and even if
size of an array is changed during a loop, this does not affect
enumerated indices. As a result, this can lead to violating array bounds,
and an array variable will be set to NONE in such cases.

• For the variant FOR x ENUM y : ... ; the "y" should be a call to a
method which does not have parameters and return a Boolean. Such method
should return TRUE to stop iterations, and it is called before each loop
iteration. Therefore the loop variable ("x") is changed from 0 to some
maximal value and then its value becomes greater the limit, the loop is
stopped. The default limit value is 1_000_000 but it can be redefined
explicitly:
FOR x ENUM(MAX 1000) method : ... ;

To create an unguided infinitive loop, a special block statement is used:
FOR, INFINITE : loop body ;

• The FOR, INFINITE loop can be terminated only by a return from the
function statement ==> .

• Statements CONTINUE / BREAK can not be used.

• A class where statements FOR, INFINITE are used, must be marked with a
modifier INFINITIVE.

A loop variable it it is integer can (as well as any integer variable) to
have an attribute INDEXING type or INDEXING (list, of, types). See more
detailed in a section devoted to control of types of indexing arrays.

In case when a FOR block is ending with the BREAK statement, its final
sequence of statements can be separated with the special statement DONE. E.g.:

FOR a IN A[] :
 CASE !a.satisfying_conditions ? CONTINUE a ;
 DONE // we've found desired item
 a.do_something
 do_something_more
 BREAK a ;

The DONE statement decreases the counting nesting level of nesting
statements (as the statement FOR would already finished).

I. 6. a. About assigning a value to a loop variable:

• If a loop variable is changed in a certain range of values (not lists
items of an array), then it is not allowed to change it in the loop;

• In case when the loop variable iterates on all (or part of) items of an
array (e.g. string or integer or other type array except an array of
structures) - assigning new value to such variable changes it but does
not affect the array item enumerating. E.g.:
FOR s IN Strings_array[]:
 s = s.Trim
 ... work with trimmed String_array[s.INDEX] ...
;

• In case of an array of structures, the variable of the loop actually is a
macros providing the access to a current item array. So, changing its
fields or assigning another structure to it changes a correspondent array
item as well as it was accessing;

• In any case this does not affect the result of an expression
Variable.INDEX returning an integer index of an array item currently
iterating.

A PUSH statement is purposed to create procedural "brackets" with saving
some state before and obligatory restoring this state after the block. Or to
call some PUSH-method and to guarantee that at the end of the PUSH block a
correspondent POP-method will be called.

Restoring is always guaranteed:

• When the block is left by a BREAK / CONTINUE statement.

• When a function is left by a ==> (return) statement.

Page 11 from 51

28.12.202211

• When an exceptional situation occur (e.g. when an operation is
interrupting of a too long operation by the user, or an operation
resulting too deep recursion of function calls)

Syntax:
PUSH variable = expression : body ;
 or:
PUSH variable : body ;

or:
PUSH method(parameters) : body ;

• On entry into the block a value of a variable is saved.
E.g. in a local stack or in a local dynamic array.

• Then new value is assigned to it (if specified).

• When the finishing bracket is achieved (it is executed even in case of a
failure), the value of the variable is restored.

• Any simple or object data type scalar variable or an array item is
allowed to be used as a PUSH block variable.

A special method with modifier POP(method2) can be called in the PUSH
statement. At the end of such PUSH block, the method2 specified in parentheses
(of the POP modifier of a method called in the PUSH), is called obligatory.

Such method2 should not have parameters, and it can not be called directly
(as well as opening method, having the POP modifier, which therefore can be
called in the PUSH statements). E.g.:

PUSH db.Transaction :
// some database operations

 db.Commit
;

A DEBUG block is intended for a temporary code injection which is required
for debug purposes. In such blocks, levels of nesting blocks are not
controlled. A compiler is always warning about such blocks not removed from a
code. Such blocks should be removed when debugging is finished.

In DEBUG blocks it is possible to declare local variables as usual. But it
is not allowed to use such variables out of DEBUG blocks (though it is allowed
to use it in another DEBUG block in the same function).

DEBUG :
 тело ;

If there are required additional classes to compile DEBUG blocks, it is
recommended to use a special directive IMPORT with the modifier DEBUG.

For the DEBUG statement:

• nesting levels are not taking into account both for the DEBUG block
itself and for its nesting code, too;

• it is allowed to omit colon:
DEBUG count_passes += 1 ;

• if the first statement is the output to console with the first output
string literal, than it is allowed to omit the symbol << :
DEBUG: "test!"#NL ;
DEBUG "another test" ;

The block SILENT purposed to prevent the compiler from warnings on some
block of code. E.g. about DEBUG statements in code.

SILENT:
DEBUG :

 body ;
;

The block SILENT purposed to prevent the compiler from warnings on some
block of code. E.g. about DEBUG statements in code.

LIMIT TIME(n) MSEC:
 body
;

There are following variants possible:

• LIMIT TIME(n) units: ... ;
is a limit by time (n - is fractional numeric expression). Units can be
one of following identifiers:

◦ MSEC || MILLISECONDS,

◦ SEC|ONDES,

Page 12 from 51

28.12.202212

◦ MIN|UTES,

◦ HOURS,

◦ DAYS;

• LIMIT FUN|CTIONS(n) : ... ;
restricts executing by amount of functions calls;

• LIMIT LOOPS(n) : ... ;
restricts executing by amount of FOR loops iterations;

Checks for possible exceeding of a restriction specified are done (usually)
each 65535 loop iterations done in the AL-IV code. So, final exceed of a limit
can be discovered later to the actual exceeding after that 64K iterations
executed between checks.

In case of a limit exceeding the code in a block stops running and running
continued from a statement next to the block. And if some PUSH statements were
executing in between, all these are finished correctly with a correspondent POP
operation (e.g. restoring a variable value).

(Do not mean the comparison operation LIKE between two strings in an
expression!)

The LIKE statement is intended to insert earlier written code without
changes in a position of the LIKE statement. An inserted code should be placed
between two block comments (on the same nesting level). A label of the first
block comment (together with a function name) is used to identify the code to
insert. There are rules:

• A reused block of code should be marked with a modifier REUSED .

• If a block is inserted from another function, the name of the function is
written following the LIKE keyword.

• A multi-dot is written next (amount of dots is not restricted, at least
three should present).

• It is possible to insert code only from the same class.

• Inserted code should be located above the LIKE statement.

• An inserted block should not have LIKE statements itself (recursion or
nesting are not possible like in macro).

• An inserted code is injected "as is", its syntax and semantics are
controlled only while compiling the LIKE statement. So do not duplicate
variable names, declarations etc. to avoid compiler errors.

• A reused block can be inserted so many times as it is needed, without
restrictions.

• For a time while a block is inserted by the LIKE statement, a counter of
nesting FOR/CASE levels is reset to zero, so there are no problems of
total nesting level exceeding allowed amount (3 nesting levels).

An example:

...
--------------------------- 'find a dot'
pos = s.Find(".")
CASE pos < 0 ? pos = s.Len ;
------------------------------- 'end of find'
...
...
LIKE 'find a dot' // place in the same function
or
LIKE Method1 'find a dot' // place in another function

Additionally, while calling the LIKE statement, it is possible to replace some fragments of code with
other:

LIKE [method].......'label', BUT (pattern1 ==> replacement1) [*N1] [, (pattern2 ==> replacement2) [*N2]]

Lists of replacements are enclosed into parentheses and listed via comma. A replacement should have a
multiplier following its right bracket in form * number if there are several such patterns in code. The
multiplier can be omitted only in case when only a single such pattern is there.

All the replacements are done just before compiling the LIKE statement having such replacements defined.
Both pattern and replacement strings can be enclosed into apostrophes. Only the string right to the

symbol ==> can be empty, but patterns always should not be empty strings.

And please remember:

• It is better to use LIKE 'name' then just to copy/paste a code.

• BUT It is better to move a common code into separate functions if this is
possible (then to use LIKE).

So do not overuse the LIKE statement without necessity.

The REVERT statement is intended to insert earlier written sequence of
assignments reverting its direction of assignment in a position of the REVERT

Page 13 from 51

28.12.202213

statement. An inserted code should be placed between two block comments (on the
same nesting level). A label of the first block comment (together with a
function name) is used to identify the code to insert. There are rules:

• A reused block of code should be marked with a modifier REUSED .

• If an inverting code block is from another function, the name of the
function is written following the REVERT keyword.

• A multi-dot is written next (amount of dots is not restricted, at least
three should present).

• It is not possible to revert code from another class.

• Inverted code should be located above the REVERT statement.

• An inverted block should contain only assignment statements, in those
destination and source parts can be reverted (at least using
correspondent getters / setters).

• An inverted code should not use local variables (including parameters and
a special variable RESULT).

• A reused block can be inserted so many times as it is needed, without
restrictions.

An example:

---------------- 'save form coordinates '
config.Set_i("Left", Left)
config.Set_i("Top", Top)
config.Set_i("Width", Width)
config.Set_i("Left", Height)
------------------------------- 'end of save'
...
...
REVERT 'save form coordinates'

II. Variables, constants and data types

II. 1. a. Names of data types, data types classification

There are predefined simple data types which can not be redefined:

• BOOL - Boolean data type, with values TRUE and FALSE.

• BYTE - byte data type, with values from 0 to 255. Using bytes in a class
requires adding a modifier BYTES to the class header.

• INT|EGER - integer numbers of usual precision.

• REAL - real numbers with default precision.

• STR|ING - string type (chain of characters).

For data types a precision is never specified:

• For variables of base data types always a precision is used which is
defined by a compiler developer (or it is controlled by project options, if
the compiler allows to do so).

When a BYTE data type is used in a class, it should be marked in the header by
the modifier BYTES, and can not be marked as SAFE.

II. 1. a. Writing constants of base data types
• Integer constants in decimal base system: [-|+]<0...9_>...
1_345 = 1345
(underscores are ignored and can be used to separate groups of digits).

• In binary system:
0b_0100_1010_0011_1001
(Case of a letter used to define a base, is ignored: B=b, X=x, except the
octal system)

• In hexadecimal system (x=X):
0xFFEA_d44a

• In octal system (only small letter 'o'):
0o_7_342_001

• Real constants:{0...9}.{0...9}[e[+|-]{0...9}]
E.g.:
-2.73e3
11_E-04

Page 14 from 51

28.12.202214

• String constants: "{symbol except "}"
where symbol is any printable character or space,
double quotas are never written. To write it, it is necessary to use a
symbol constant #QU). E.g.:
#QU "This text is enclosed into double quotas" #QU

• There are several named string constants written in form #NAME:
◦ #NL - new line (usually this are two symbols #CR#LF with codes 13
and 10);

◦ #CR - caret return (13);

◦ #LF - line feed (10);

◦ #BK - backspace (8);

◦ #TAB - tabulation (9);

◦ #SP - space (32);

◦ #BELL - sound (7);

◦ #QU - quotation mark (34);

◦ #ESC - special "escape" symbol (27);

• Also a symbol can be encoded in form #number, e.g., #32 equals to #0x20 and
equals to #SP and " ";

• To concatenate character constants and literal strings there are no
operation symbols using.
E.g.:
"This text is finished by a caret return" #CR

• If a line of code is starting from a quotation symbol, the line is a
continuation of the previous line. So, to write a very long string
constant, not fit into a single line of code, it is sufficient to divide
the string onto two (or more) strings, and write its continuation in
another string. E.g.:
"This is very long string of text. It is so long that "
"it can not be written in a single line of code."

• If a string constant is starting from a symbol '@', then for all continued
lines symbol #NL is inserted in between, so new line characters are
inserted into a long string constant in places where the line is continued
in next lines. E.g.:
@"This string constant contains 3 lines: the 1st,"

"the 2nd,"
"and the 3rd"

• A symbol @@ before a string literal cancels previous symbol @- until the
end of the concatenation of strings or until the next symbol @.

• As a continuation of a string constant in a separate line of code a literal
in form ''text'' can be used (bounded with doubled apostrophes). Such
string literal can contain any characters except a combination ['']
(doubled apostrophes).

Page 15 from 51

28.12.202215

II. 1. c. Enumerations

A enumerated data type defines a set of named constants. The set itself is
also named to make it possible to refer to it by the name.

• In enumeration declaration, its items are written comma separated. A
declaration:
ENUM {names|_of_enumeration} : values .

• A enumeration type name is always enclosed into figure brackets and starts
from a lowercase letter.

• Each enumeration item name is enclosed into apostrophes.

• An item name can have short and small form as usual (separating short name
and the rest part by a symbol '|').

• Names must be unique in the class (among all the enumerations in the
class).

ENUM {color|s_of_traffic_light} :
'R|ED_COLOR',
'Y|ELLOW_COLOR',
'G|REEN_COLOR' .

Operations on enumerations:

• It is not allowed to assign an integer value or value from another
enumeration to a variable of such type.

• NONE-value for a enumeration type value is the first item in the
enumeration (corresponds to 0 in the internal representation);

• Value of variable (or constant, or expression) of a enumerated type can be
converted to an integer using embedded function Int.

• Back conversion of a numeric value to an enumerated type is not possible
except via a custom function (e.g. using CASE statement).

• Embedded function Name returns for an enumerated item its name by value
with apostrophes (the first name of the item if there are several ones
there).

A enumeration can be used as a range for indexes of a fixed array:
STR LName|s_of_lights[{color}]

In such case the enumeration items only can be used as indexes of such fixed
array:
LName['R'] = "Red color"

Enumeration items are not ordered and can not be compared using operations <,
<=, >, >= (only == and != are allowed). Enumeration items can form a constant
array, and for pair "item - array of items" it is possible to use operations IN
and !IN:
CASE A IN ['R', 'Y'] ? ... ;

In case of naming conflict between enumeration items from different
enumerations, those should be qualified using names of enumerations:
{enumeration_name}.'ENUMERATION_ITEM'.

In case when names of enumerations are matching, a class name should also be
added to a specification:
{Class_name}.{enumeration_name}.'ENUMERATION_ITEM'.

When a CASE statement condition has a enumerated type:

• it is not allowed to use the ELSE branch,

• all the items from the enumerated data type must be listed,

• more then a single constant can be used in a single branch:
CASE Greek ?
 ['ALPHA', 'BETHA']: ...

Page 16 from 51

28.12.202216

 ['GAMMA', 'DELTA']: ...
 ['EPSILON']: ...
 ['DZETHA', 'ETHA', 'TETHA', 'IOTHA', 'KAPPA']: ...
 ... ;

II. 2. a. Declaration of variables

A declaration of a variable is starting from a specification of its data type
in {figure} brackets (or from one of reserved data type names: BOOL, BYTE, INT,
REAL, STR).

• When a variable is declaring its full name should be at least 8 characters
length.

◦ EXCLUSIONS:
1. Loop variables (FOR) name length is not restricted;
2. Integer variables having explicitly specified attribute INDEXING;

• Short part of the variable name is separated from the rest of name with a
symbol '|'.

• For arrays, its size is specified in [square] brackets.

◦ For dynamic arrays brackets are empty.

◦ For fixed arrays indexed by integer index, a constant is specified
defining the array size (index of the last item + 1).

◦ For fixed arrays with indexes from a enumeration, a name of the
enumerated type is specified, in figure brackets as usual:
BOOL My_arr|ay_of_flags[{traffic}]

• Then (only for integer scalar variables and arrays) an attribute
INDEXING type or INDEXING (list,of,types) can be specified. Specifying
such attribute means that types specified will be compared to types of
arrays items when such arrays are indexed using such variables (or simple
expressions like X+Y). Mismatching of such types leads to error messages.
Also, similar comparison occurs while assigning one variable to another
(when both have the INDEXING attribute), and in case when a simple
expression X+Y or X-Y is assigned and one of X and Y are INDEXING variables
and the destination also is an INDEXING variable. And while passing such
expression or variable in place or a parameter having such attribute, too.

• Then variable MODIFIERS are following if these are necessary (READ, INIT,
MAXLEN[n]).

• A declaration can continuing with an assignment of an initial constant
value, if this is suitable (not in all cases, see about classes,
structures, global object variable).

A variable always has an initial value. If there are no explicit initial value
specified, a default initial value is set.

• For an object, this is NONE-value of a correspondent class (see "Classes").

• For a string this is an empty string.

• For a dynamic array this is an empty array.

• For enumerations, collections, numbers this is arithmetic 0 value (for
enumeration types this means always the first item in the enumeration).

• A structure is initialized with a structure having zero-valued fields.

Naming variables rules:
• A short name is in identifier of 1 or more characters,

• Along name is an identifier from 8 to 80 characters,

• In the code both short and long names can be used equally.

Case of letters in a variable name:

• A Public variable or class field name is starting from an uppercase letter
(and can have modifier READ making it read-only).

• CONSTANTS usually contain only capital letters.

• private variables and class fields usually start from lowercase letter.

II. 2. b. Field modifiers

If some modifiers are required for a variable, these are written in a
declaration following it names and dimensions.

• READ|ONLY - is used for module level variables, fields of classes (and also
for function parameters).

◦ For a module variable it enables only reading the variable from
other modules.

◦ For a class field, it becomes read only except its own module and
code of methods of inherited classes.

• INIT|IALIZE - for a class field, it is required to be initialized while
creating an object (see "Classes").

Page 17 from 51

28.12.202217

• DEPRECATED('text') - such field is deprecated though it is still is
supported. Text should contain information about an alternative (this can
be not only a filed, but a function, or another class etc.) It is
recommended to use an alternative as quick as possible, still in following
versions the field can become unsupported.

• ABANDONED('text') - the field is abandoned. Using it leads to a compiling
error. The text should contain information about an alternative.

Additionally to explicit modifiers above, there are also implicit variables
modifiers:

• A function parameter declared in the function header but not used in the
function body, should have a substring "dummy" temp in its name (in any
register case).

• A variable declared in a function body and (even if a value was assigned to
it) not used in expressions also should have the substring "dummy" in its
name.

• Object local variable, to which a new object variable was assigned, which
were not added to an array of strong references, has not an owner
specified, should have a substring " temp" in its name (in any register
case). E.g.,:
load|er_Temp = {Text_file}(Path = path)

II. 2. c. Named constants declaration

Constants can be declared only on a module level, and only of embedded simple
data types (BYTE, BOOL, INT, REAL, STR).

• Declaration of a single constant in a single line:
CONST type_name {Name_of_block} : CONSTANT_NAME = expression .

• Declaration of several constants:
CONST type_name :
 CONSTANT_NAME_1 = expression
 CONSTANT_NAME_2 = expression
 ...
 CONSTANT_NAME_N = expression .

It is recommended to use uppercased names for constants.
A block of constants can be named (its name is specified in {figure brackets}

following the type name). Such name of a block of constants can be used while
specifying restrictions on functions parameters.

II. 2. d. Arrays declaration

Array dimensions are written in square brackets following the variable names.

• Arrays can be only one-dimensional (if necessary special indexing methods
can be used to create multi-dimensional arrays of some data types).

• An array variable can be fixed or dynamic.

• In square brackets nothing are written for a dynamic array:
STR Lines | Lines_if_text[]

• Fixed array can have several dimensions.

• For a fixed array an integer constant expression is written in square
brackets, or a name of a enumeration type. For an integer, the value is an
array size (it is greater by 1 then an index on the given dimension).
An example (an array of 16 items):
REAL A | Array_of_values[16]

• While using an array even as a whole object all its square brackets are
listed always.
E.g., A[].

Initial values for items of arrays are always provided as well as for all
other variables.

• A dynamic size array initially is empty.

• A fixed array of class objects initially is filled by NONE objects of the
correspondent class.

• A fixed array of numbers, enumerations, collections is initially filled
with arithmetic zeroes.

• A fixed array of structures initially is filled with NONE-values of
correspondent structures (i.e., all its numeric fields are 0, string are
empty etc., and this is defined recursively for fields also been
structures).

II. 2. e. Array constructor

An array constructor is a sequence of items in square brackets in a form:
[value, value, ... value]

Only constants are allowed as values.

Page 18 from 51

28.12.202218

An array constructor can be used as the second operand of an operation
checking if the first operand is present in the second array A IN B (and in the
opposite case: A !IN B).

II. 2. f. Using arrays

Main specific operations with arrays:

• Reading and writing items of an array. In the left side of an assignment
statement or as an operand of an expression a name of an array is specified
and for each of its dimensions an expression is written in square brackets,
which represents an integer index of an item of the array.
E.g.: A[i] = B

• Adding an item to the end of a dynamic array with an operation <<, e.g.:
X[] << Value

• Calling one of embedded functions designed under dynamic arrays::
◦ Adding an item at the end of an array:
X[] << s

◦ Inserting an item at the position i:
X[].Insert(i, Value)

◦ Deleting an item at position i:
X[].Delete(i)

◦ Deleting several (Count) items from the index i:
X[].Delete_range(i, Count)

◦ Deleting all the items equal to R:
X[].Remove(R)

◦ Finding of an index of the first item equal to R:
X[].Find(v)

◦ Checking if the value R is containing in the array X[]:
present = R IN X[]

◦ The same as above (if not present, -1 is returned):
CASE X[].Find(R) < 0 ? not_found ;

◦ Getting amount of items in an array:
count = X[].Count

◦ Deleting all the items from an array:
X[].Clear

◦ Allocating exactly new_size items (deleting ambiguous or adding NONE
items):
X[].Allocate(new_size)

• When an item is read out of array bounds, then a NONE value of
correspondent type is returned.

• Assigning a value out of array bounds is ignored.

Passing an array as a parameter to a function:

• Square brackets for an array parameter (dynamic or fixed).

• In place of a dynamic array only a dynamic array can be passed.

• In place of a fixed array formal parameter only a fixed array or a sub-
range of a dynamic or a fixed array can be passed:
A[first TO last]

• To specify a formal parameter of a function as a fixed array with integer
indexes, the symbol '*' is written in square brackets.

• In place of a fixed array with indexes given by a enumerated data type,
only a fixed array with same type of indexes can be passed only.

It is not allowed:

• Assigning an array as a whole variable.

• Returning an array as a result of a function (it is necessary to declare an
array parameter of a desired type and pass results with it).

Special indexing arrays with the symbol '*':

• The '*' symbol in the square brackets following the array name in a
position where an expression operand is possible (e.g. a variable) means
the index of the last item in the array (equal to Count-1);

• So, A[*] is the last item in the array A, and A[*-1] accesses the
penultimate item (in the position Count-2).

II. 3. a. Function header
FUNCTION names (parameters) ==> result_type , modifiers :
 statements .

FUNCTION names (parameters) ==> result_type , modifiers :
• A static function is starting from a keyword FUNCTION or FUN.

• A class method is starting with the keyword METHOD.

• If the method is overriding its predecessor method from its class ancestor,
the keyword OVERRIDE is used.

Page 19 from 51

28.12.202219

• For a constructor and a destructor, a keyword CONSTRUCT or DESTRUCT are
used, correspondently (and in such case there are no function name(s),
parameters, result types and so on - just a colon symbol.

• To redefine standard operations +, -, *, / special form of a function is
used starting from the keyword OPERATOR.

• Testing functions are starting from the keyword TEST.

FUNCTION names (parameters) ==> result_type , modifiers :
• Functions can have two or more names (at least one name should be not less
then 8 characters).

• If a function has two names, the short name is written first, than after a
separator '|'- the rest of the name. When a method of a predecessor class
is overriding, only the first (short) name of the method overriding is
specified.

• Public function name starts from an uppercase letter. To make public a
method or function which name is starting from a lowercase letter, use the
modifier PUBLIC (see below).

• Function accessible only in the class itself (and its descendants) is named
from a lowercase letter always.

• OPERATOR has not names, and its parameters are specified in the form
TYPE OPERATION TYPE (or, for unary "-" operation, in the form
OPERATION TYPE), and so its parameters definition is used as its unique
name (it is allowed to redefine operators several times for the same
operation but with different types of parameters).

• It is possible to declare a single no-named method in a class (in the
header the dot is used in place of name). Parameters for such method are
enclosed in square brackets. If a setter is defined for such method, then
the method call can be used in the left side of assignment statements.

FUNCTION names (parameters) ==> result_type , modifiers :
• Parentheses must be always present.

• For empty parameters list nothing written (and parenthesis also can be
omitted).

• Amount of parameters is not restricted but if a function has more then
three parameters then all its parameters starting from the fourth (or
earlier) should be passed in the form of an assignment
Parameter_name= expression

Parameters are separated with comma.

• First a type of a parameter is written, then its names, then optional:
dimensions, modifiers, default value.

• Parameter can have two or more names (short name is separated from the rest
of the long name with the symbol '|' as usual).

• Full parameter name should be at least 8 characters length.

• Parameter names of public functions should start from the uppercase letter.

For an array parameter its dimensions are listed following its names.

• For dynamic array, square brackets are empty.

• For fixed arrays with integer indexes, the symbol '*' is written in
brackets.

• For fixed arrays indexed by a enumeration, the name of the enumerated type
is written, in figure brackets as usual, e.g.:
BOOL A|rray_of_color[{color}]

Integer parameters can have attribute INDEXING type or
INDEXING (list, of, types). If such variable is indexing an array then the type
of array items is comparing to types specified. When a function is called passing
in place of an INDEXING parameter a variable (or a simple expression like X+Y
where one of argument is an indexing variable), then its INDEXING attributes
(types) are compared.

Parameters can not have its own modifiers.
Parameters which are not used in the function body, should have a substring

"dummy" in its name (in any registry case).
Scalar parameters are always passed by the value (formally) and can not be

changed in the function body.

Parameters can have restrictions on values passed or be used in restrictions
to other parameters. Parameters can be restricted with lists of constant values
of ranges independently, or dependently from values of other parameters passed..
See function modifiers RESTRICT, IF, THEN (below).

For operators, input data types are its parameters. At least one of input data
types should be a class or a structure. In the operator body (which is always a
single expression) to refer to that type parameters, letters A and B are used
(though there are no such letters on the operator header). The "A" letter is used
to refer to the first parameter, "B" - to the second. In case of redefining the
unary operator "-", the "A" letter is used to refer to the single input data
type.

In case of common functions in place of a parameter type a list of possible
types enclosed into parenthesis can be found like {INT, REAL, STR, {color}}. See
detailed in additional parts.

Page 20 from 51

28.12.202220

FUNCTION names (parameters) ==> result_type, modifiers :
If a result type is not specified (together with the symbol '==>'), then the

function is not returning a result.

• To assign a result to a function, an assignment to a pseudo variable RESULT
is used.

• As well as for other local variables, the RESULT variable is initialized
initially with a NONE value:

◦ NONE - for objects,

◦ 0 - for numbers,

◦ "" - for strings,

◦ first item - for enumerations,

◦ FALSE - for BOOL data type.

• A function can not return an array as a result, only a scalar.

• Special symbol ==> is also used as an operation of returning from a
function. It can follow any simple statement (assignment, function call,
etc.)

A sample of a function counting number of dots in a string:
FUNCTION Ndots|_count (STR S) ==> INT :

FOR i IN [0 TO S.Len-1] :
CASE S[i] == "." ? RESULT+=1 ;

 ; .

In case of a common function result type can be represented as a list of types
enclosed into figure brackets: {INT, BOOL}. See detailed in the Additionally
topics.

It is possible to write following the result type returning:
RESULT|some_additional_text_descripting_the_returning_value.

FUNCTION names (parameters) ==> result_type, modifiers :

Function modifiers are listed via comma. Following modifiers are possible:

• RECURSIVE - function is recursive. If a recursive function does not call
itself and it is recursive via a call to a function which is already marked
as recursive, the modifier can be omitted.

◦ If too deep recursion is detected (usually more then 128 call
levels), then execution is returned to the first recursive call
level and a function called on that level is ended (returning
NONE value corresponding to its result type - if the function should
return a value).

• NEW - function is returning a new object instance.
◦ At least one statement in the function is an assignment of a new
object creation (or a result of calling another function with the
NEW modifier) to the pseudo variable RESULT.

◦ A function with the NEW modifier can be called only separately (not
as an ordinary operand in an expression), and it is necessary either
to assign a result to an strong object reference, or to its RESULT
variable, or to a temporary variable (having substring temp in its
name).

◦ If at least once a new object is assigned directly to the RESULT
pseudo-variable, than the function must have the modifier NEW.

• REPLACE - for an overridden virtual method of a class not returning a
value, to inform that the function does not call a base method, so it is
totally override. If there are no such modifier for such kind of an
overrode function, then it is required to call a base method (using
operator BASE) at least once.

• NATIVE - a body of the function is a string constant containing a code
inserted into resulting (compiled) function as is. (Either a function body
is ending with a statement NATIVE "string").

◦ A class, having NATIVE functions must have the modifier NATIVE.

• SETTER FOR identifier - function is a setter for a field or a getter method
specified by the identifier. Such field or method must be declared just
before the setter function. In case of a field, a setter should have a
single parameter of the same type as the field. For a case of the getter
method, the setter should have number of parameters greater by one then a
getter. The last parameter should have the same type as a result of a
getter, all other parameter data types should match for getter and setter.
The presence of such method for a field does not mean that it is possible
to assign a value to the field using assignment statements (except special
cases, see REVERT, /debug).

• CALLBACK - function is intended to call it from the class code (and native
functions) only, not for direct call of it from the customer code (even not
from descendant classes of the class containing the callback function).
E.g. an event mouse_down in a form: it is necessary to override the method
rather than to call it in your form implementation class.
The CALLBACK modifier also should be used to prevent removing the function
in result of optimization.

• POP(Method2) - function is intended to be called only in the PUSH
statement. When such PUSH block is ending, the Method2 specified in
parenthesis is called anyway (the Method2 should not have parameters, and
it can not be called any other way except this).

• DEPRECATED('text') - the function is deprecated and it is necessary to use
an alternative specified in a 'text'. In further versions of a class it is
possible that the function will not be supported (and become abandoned or

Page 21 from 51

28.12.202221

removed). Either, on some platforms the function can not be implemented or
very restricted (in such case it is desired to write the text
'Platform dependent').

• ABANDONED('text') - the function is no more supported, use an alternative
specified in the text in apostrophes. Calling such function leads to a
compilation error. The ABANDONED modifier can be used in a derived class to
abandon a method declared in a base class. But the compiler will control
calls of abandoned methods only when those are called for the final class
only.

• STORE(Parameter=value) - creates a special "invisible" parameter of an
integer data type, which creates on a caller class side correspondent
integer variable (separately for each call to the function). Such variable
is passed implicitly by reference at call. See more detailed in the
Additional section.

• FORGET - When such method is called, all the stored invisible values in the
caller object are reset to its initial values. See details in the
Additional section.

• TRAP - a method is intended to use as a debugging trap, which is called
when some event on data change occur for a class field. For a field, up to
three traps can be set (for operations: read, write and add/insert/delete a
value to a dynamic array field). A list of traps installed for a field is
specified in its modifier TRAP(trap1, trap2, trap3) . A trap type is
defining on base of its parameters:

◦ for a scalar field, method without parameters is called when the
field is accessed for read operation, and a method with a single
parameter is called before changing the field, in such case the
parameter should be of the same type as the field and it receives a
new value assigning to the field;

◦ in case of an array field, an INT parameter is added where an index
of an item accessing is passed; in case when the first parameter is
of type BOOL, the trap is called before delete / after insert/add
operations, and the first BOOL parameter receives TRUE in case of
add/insert operation, or FALSE in case of delete operation.

• RESTRICT name IN [list] or
RESTRICT name in {constants_block_name} or
RESTRICT name IS CONST - restricts a parameter with the given name: it can
be only a constant (in the first case only from the list of values
specified).

• IF name IN [list] - a function parameter with the given name is used to
restrict values of another parameter (specified in the next restriction
modifier THEN). A list can be replaced with a name of a constants block in
figure brackets (see CONSTANT statement definition).

• IF name IS CONST - if a function parameter with the given name gets a
constant, then the following restriction (modifier THEN) is active.

• THEN name IN [list] - a conditional restriction of a given parameter by
only values specified in the list (a condition is specified by the previous
IF modifier).

In case when some redefined operators are used in the function body, it should
have the modifier OPERATORS(list of classes) . This does not depend on kind of a
function (FUNCTION, METHOD, CONSTRUCTOR, OPERATOR, etc.) A list of used classes
should be specified in parenthesis, in the order in which classes are enumerated
while searching an appropriate operator.

II. 3. b. Function body

Function body consist of statements located and it is finished by a dot
symbol.

• On any block level the body should not have more then 7 simple statements,
7 declarations of local variables and 7 block statements.

• A block can be separated by comments
---------------- 'label'
(not more then 7 such comments for a block), in such case counting
statements of different kinds starts again.

If the requirements above are not satisfied. then it is necessary to mark
entire class with the modifier BAD (in the class header).

In case of a single assignment statement, in which an expression is assigned
to the pseudo variable RESULT, the RESULT keyword can be omitted, and entire
function body has a form
: = expression
(the space between ':' and '=' is not necessary).

II. 3. c. Calling functions

Parenthesis are necessary to be used only if actual parameters are present.

• Actual parameters are listed in parentheses comma separated in the same
order as correspondent formal parameters are declared.

• Object parameter is passed implicitly. It can be used explicitly via a
pseudo-variable THIS.

• If a function is returning a result, it can be called in a separate
statement not assigning returning result. If the result is not required, it

Page 22 from 51

28.12.202222

should be "assigned" to a NONE, e.g. in form:
NONE = object.Function(parameters)

• Any static function can be called using a prefix style, when its first
parameter is moved to a function prefix, e.g.:
x.Sin - instead of Sin(x)
s.Lower.Ending(".al4") - instead of Ending(Lower(s), ".al4")

III. Classes and objects

III. 1. a. Class declaration

Syntax.

/*
CLASS {names} , modifiers:
 IMPORT: {Class1}...;
 BASE CLASS {Base_class}
 field1
 field 2
 ...
 method 1
 method 2
 ...
 --------------- 'section label1'
 ...
 --------------- 'section label2 '
 ...
END

HISTORY
...

*/

One file contains exactly one class definition.
All other declarations (enumerations, functions, constants, fields) are

located only in classes and belong them.
The are no global (static) class fields, all the fields are members of

certain objects.

• The AL-IV code is always located between lines containing symbols of the
end and the start of multi-line comments:/* and */.

• Class names are enclosed into figure brackets and always start from an
uppercase letter.

• Class name can be separated onto parts by the symbol '|'. Before the
symbol a short name of the class is defined, after the '|' symbol - the
rest of a long name of the class.
E.g.: {My|_class} defines short name {My} and full name {My_class} for
the same class.

• A long name must not be shorter then 8 characters.

• Class file name (w/o extension) should much the long class name (w/o
figure brackets). But violating this rule leads only to a warning, not to
an error.

III. 1. b. Class modifiers

A modifier for a class is written following the class names. Such as:

• ABSTRACT - the class is intended only for deriving new classes on base of
this class, it is not allowed to create objects of the class itself.

• BAD - the class is not satisfying requirements on code style (not more
then 3 parameters for a function, not more then 3 nesting levels of block
statements, not more then 7 fields in a section of a class, not more then
7 simple statement + 7 block statements in a section of a block in a
function code).

• BITWISE - bitwise logical operations between integer values are used.

• BYTES - bytes are used in the class.

• DESTRUCTORS - the class has a destructor.

• NATIVE - there are native (low-level) functions in the class (which
depends on a target platform).

• OPERATORS - there are operators redefined.

• RECURSIVE - there are recursive functions in the class.

• STOPPING - a STOP operation is used in the class.

• UNTESTED - there is an untested code in the class.

• TESTED(nn) - class was tested for about nn precents.

Page 23 from 51

28.12.202223

• SAFE - all is OK, class is tested fully and there are no warnings on a
safety or style.

• DEPRECATED('text') - the class is still supported but its using is
deprecated. The text in apostrophes contains information about an
alternative which should be used as soon as possible still in future the
class can become not supported.

• ABANDONED('text') - the class is abandoned. Any reference to it leads to
a compilation error. The text contains information about an alternative.

• INT64 REQUIRED - it is required for the class to work correctly to use
64 bits integers in a project. If the project has the option/int32 in
settings, this is not possible, and the compiler fires an error.

• INT64 DESIRED - it is desired for the class that the project should use
64 bits integers. But if it has the option /int32, the compiler warns
about this conflict.

III. 1. c. Import section

The first in a class (following the class header) should be specified a
statements IMPORT if these are required. In an import statement classes are
listed which are used (including an ancestor class if the class is not
descending from the common class {Object}).
IMPORT: {Class1}, {Class2}, ...;
(the semicolon or the dot can be used to end the IMPORT statement).

IMPORT statements can have modifiers:

• TEST - classes listed are imported only on the test stage;

• DEBUG - only when the /debug key is in project options (i.e. the project
is building in the debugging mode);

• FRIENDS - classes are declared as friendly for the class defining (so,
these have access to its hidden fields and methods as those are public).

III. 1. d. Inheritance

To specify an ancestor for a class its declaration is written in a form
(immediately after IMPORT directives):

BASE CLASS <Base class name 1>

• If a construction BASE CLASS...is absent, then the class has no other
ancestors except the common for all classes unnamed class{}.

• If the are methods in a class which are overriding correspondent methods
of a base class then all those methods are declared starting from a
keyword OVERRIDE:

OVERRIDE some_name(paramers) ==> result_type :
 ...
.

• To assign other initial values to fields of a base class and to do
something else on a create time of an instance of a class, a procedure is
used

CONSTRUCT :
 ...
.

• To do something special when an object is destroyed, a procedure is used
DESTRUCT :
 ...
.

• If a destruction procedure is used in a class it is necessary to add a
modifier DESTRUCTORS to the header of the class.

When a method is redefined in a class:

• A prefix OVERRIDE is used instead of the METHOD.

• Only one name of the method is specified.

• All the parameters of a base method are listed (in parenthesis, comma
separated). First letters of correspondent parameter names must much.
Types must be compatible by types and by dimensions (for arrays).

• For methods returning a value:
◦ data type of a returning value is specified.

◦ An example:
OVERRIDE enabled ==> BOOL :

RESULT =o.Edit1.Text!="" .

A redefined method can call a base method (the same named method of the
base class).

• To call explicitly a base method in a body of a redefined method a syntax
is used: BASE.

• All the parameters are passing by a usual way, and the object itself is
passed implicitly as usual: Base(parameters) .

• A method not returning a value, should at least once call a base method,
else it is necessary to add a modifier REPLACE to the overriding method.

Page 24 from 51

28.12.202224

III. 1. e. Objects. Strong and weak references

A variable of a class type (a class instance) is an object of the class.

• Objects are declared by specifying a correspondent class name in figure brackets
as a type name of the variable.
E.g.:
{My Class} M|y_object={My_class}

• A field or a variable not having trailing underscore characters in its names, is
a hard (keeping) reference to an object.

• If an object_ name has a trailing underscore character, it is defined not to own
an object but to be just a weak reference to to another object.

• Such weak object reference variable links to it just while it exist and there
are object variables referencing such object strongly (or an owner of the object
still exists).

• All the local variables in a function are strong references always.

• When a count of strongly referencing variables becomes zero, the object is
destroyed and all the weak pointers start pointing to NONE value immediately.

• If at create time for an object an owner was specified explicitly (OWNED BY),
then presence of strong references to it has no effect: it will be destroyed
together with its owner, and at that moment all the references to it, either
strong or weak will be redirected to theNONEobject.

• NONE - is a special object of a class, having all the object fields equal
to NONE (and 0 for numbers, "" - for strings, etc.). Writing to fields of such
pseudo-object is always ignored, reading is always returning NONE and 0 values,
calling its methods does not lead no any valuable operations.

• All the object variables initially are set to NONE, and if an object is read out
of bounds of an array, also NONE is returned.

THE RULE

• A field FA of a class A which is a strong reference to an object can not belong
to a class B which is a direct ancestor of the class A.

• If a class A has an object field of class B which is a strong reference, then
the class B can not have object fields which are strong references to class A
or other classes which are direct ancestors or inheritances of A.

• When a class A1 references strongly an object of a class A2, and the class A2
references strongly an object of a classA3and so on, and a class A(n-1)
references strongly an object of a class A(n) , then the class A(n) can not
contain object fields which are strong references to any of previous classes A1,
A2, ..., A(n-1) .

• It is not possible to refer with a strong reference to an object of the same
class, in part.

• As a result, it is not possible to create circled chains of strong references
of objects to each others.

• Different kinds of peer networks of objects, graphs, lists etc. can be easy
formed using weak_ only pointers.

• Just created object should be either
◦ assigned to an external (for a function) object variable without an
underscore at the end of its name (i.e. a strong reference to it should
be created),

Page 25 from 51

28.12.202225

◦ or it should be added to an external array of strong references (an
operation, >> array[]),

◦ or an owner object should be specified (an operation, OWNED BY var_ref),

◦ or it should be assigned to a (local) variable which has substring 'temp'
in its name (in any case, e.g., Example|_TempVar) .

• A variable is an external to a function if it is:
◦ either is a field of the class itself,

◦ or it is a field of an external variable,

◦ or it is a pseudo-variable RESULT,

◦ or it is a field of the RESULT,

◦ or it is a field of an object parameter.

• If a newly created object at least once in a function body is assigned to
the RESULT variable, then the function should be marked as NEW.

• Function marked as NEW can be called only in a standalone statement like a
statement where a new object is created directly. And the new object created
with a function marked as NEW, also must be assigned to an external variable,
added to an external array or assigned to a temporary variable.

• For a NEW function result it is not allowed to use OWNED BY instruction.

III. 1. f. Fields

Fields of a class are declared very like to local variables but on the same
level as class methods, functions and other class declarations.

Field declaration (schematically):
TYPE Name|detailed [size], modifier = initialization

• TYPE is either one of basic types (BOOL, BYTE, INT|EGER, REAL, STR|ING),
or a enumeration, structure or class in figure brackets.

• A total field name should be at least 8 symbols (not accounting '|'). If
a name starts from a capital letter, then the filed is public.

STR Public_s|tring_variable

Hidden fields names start from a lowercase letter.
INT local_i|nteger

If a field name ends with the underline symbol (only objects of classes),
then it is a weak reference to an object.

{Matrix} Transform_|ation_matrix_
In such case any part of the name separated by the symbol '|' should be
ended with the underline.

• [size] is an (optional) array size (not applicable to scalars). If square
brackets are empty, then the array is dynamic.

STR List|_of_strings[]

Size of a fixed array can be cpecified either by a numeric constant,
INT Ten_num|bers[10]

or by a name of a enumeration
BOOL Traffic_l|ights[{colors|_of_traffic}]

or by the symbol '*'
BYTE Pixels|_array[*]

(the last is very special case allowing to change an array size from a
native code, and the same time to access it from high-level code as a
usual fixed array).

Class fields can have modifiers listed comma separated following its
declarations (but before an initialization if it is present).

• READ or READONLY- a field is declared accessible "only for read". Such
field can be changed only by methods of the class itself, by its
descendants and friend classes;

• INIT or INITIALIZE- a field requires to be initialized due to object
creation. If to create an instance of a class a standard constructor is
used in form
destination={Class_name}(Field1=value1, Field2=value2, ...)
and such field is not listed in the assignments list in the parentheses,
this leads to a compiling error. If an INIT-field is also a read only
field, then such explicit constructor can be used only in methods of the
class itself, of its descendants or its friends;

• TRAP(method, ...) - specifies a list of trap methods for a field (up to
3 traps for a field); it is possible to list only methods of the class
itself which do not return any result and:

◦ if the field is scalar, then it is allowed to use methods without
parameter (a read trap), or methods with a single parameter having
the same type as the field itself (a writ trap which is called
before assigning a new value, which is passed in the parameter);

◦ if a field is an array then it is allowed to use following
combinations of parameters:

◾ (INT) - a trap for read an item with an index (specified by
the parameter);

Page 26 from 51

28.12.202226

◾ (INT, {field type}) - a trap for writing a value into an
array item (with a certain index specified by the first
parameter, the value assigning is passed as the second
parameter) ;

◾ (BOOL, INT) - a trap on changing array size: the first BOOL
parameter is TRUE in case of add/ insert operation (and
such trap is called after insertion operation); in case of
delete operation the first parameter receives the FALSE
value (and delete trap is called before deleting the
value).

◦ traps are not purposed to modify program logic, and it is not
correct to modify values assigning or reading (though it is still
possible to change array size - but do not do so). A task for
traps is to simplify searching problem operations while debugging
only;

• CLAMP- the field array of a fixed size (equal to 2n) which is clumped
while indexing: while accessing an item 256 of an array with size 256,
actually the item 0 is accessed, the index 257 is converted to 1 etc.

• DEPRECATED('text') - field is deprecated, you are warned if use it;

• ABANDONED ('text') - field is abandoned, the compiled fires an error in
case when it is used in code.

III. 1. g. Methods

To declare a method rather then a static FUNCTION, the keyword METHOD is
used. All the class methods are virtual and always can be overridden in a
derived class (using keyword OVERRIDE in place of the METHOD).

• The key peculiarity of a method is: its first parameter is the object of
its own class. It is not listed in a formal parameters list. If it is
necessary to call it explicitly, the reserved word THIS can be used. To
access field or methods of the class itself (and to fields of an ancestor
class or methods of descending classes), the object THIS is used
implicitly without writing it in code:

CLASS {Example|_using_of_fields_in_method}:
 STR Field|_for_example="Hello, this is Field!"
 METHOD Print|_field: << Field.
 END

• There is a polymorphism there: calling a method leads to call a method
assigned for a certain class instance, representing an object.

• It is always possible to call from an overridden method the correspondent
method of the ancestor class: BASE or BASE(parameters) . If necessary,
several times, in different parts of code of the method overridden (but
only in that method).

• A method not having parameters should call the BASE method at least once,
or otherwise it should have the modifier REPLACE (talking to the compiler
that the method is replacing its previous implementation totally, and
does not require to call the ancestor's implementation).

• The constructor always calls the constructor of the ancestor before
running, implicitly. It is not possible to call it's BASE explicitly in
a CONSTRUCT.

• The destructor also calls the ancestor's DESTRUCT implicitly, but at the
end of its working.

III. 2. a. Creating an object instance

Object construction:
variable={Class_name}(

 Field1=expression, Field2[] << expression, ...)

• If a value is assigned to a variable in a declaration statement and
actually the same type object is created as the variable declared, then
type name of the declared variable can be omitted:
stream|_read_temp={File_stream}(
 Path=source_path, Mode= 'READ')

• If fields initializations are not necessary, parentheses are omitted.

• If an operation OWNED BY expression is followed (comma separated), this
assigns an owner for the object created.

◦ For such object, its strong usage counter does not affect its life
time: it exists until its owner is destroyed.

◦ If at the creation time the object assigned as an owner is
referencing NONE, then the object owner is not assigned and it is
most possible that the object created will be destroyed on a
function end.

• Either an operation of adding the object created to an array of strong
references may follow (comma separated):
, >> variable[]

• An object created should be either assigned to an external (for a
function) object field or variable,
or it should be added to an external array of strong references using

Page 27 from 51

28.12.202227

postfix operation:, >> array[]
or an owner should be assigned to an object using postfix
operation:, OWNED BY value.

In other cases a variable on the left side of an assignment should
have a substring 'temp' in its name.

If the class has an ancestor in its hierarchy, this should be specified
with the statement BASE CLASS {Name}, but after the IMPORT statements section
where the ancestor class is listed.

A class is always ended with a standalone statement END located in a
separate line.

Before the END statement following statements/blocks can be found:

• enumeration declarations
ENUM {name|detailed}:
 'NAME|DETAILED1',
 'NAME|DETAILED2',

• structure definitions
STRUCTURE {name|detailed}:
 Field1
 Field2

• table definitions
TABLEN ame|detailed: {structure}
 NAME "name"
 COUNTER(list)
 NOTNULL(list)
 NAMES(field="name", ...) .

• field declarations
TYPE Name|detailed [size], modifier= initialization

• constructor declaration
CONSTRUCT:
 BODY.

• destructor declaration
DESTRUCT:
 BODY.

• static functions declarations
FUNCTION Name|detailed(parameters) ==> RESULT_TYPE, modifier1,
modifier2, ... :
 BODY.

• methods declarations
METHOD Name|detailed(parameters) ==> RESULT_TYPE, modifier1,
modifier2, ... :
 BODY.

• overridden methods
OVERRIDE Name(parameters) ==> TYPE, modifier1, ...:
 BODY.

• test functions
TEST Name|detailed (parameters) ==> TYPE:
 BODY.

• operator redefining
OPERATOR TYPE OPERATION TYPE==> TYPE:
 EXPRESSION.

• block comments
--------------------------------- 'text'

• native code directives
NATIVE: "code specific for a platform" .

• to-do statements
TODO "text" .

A class is ended with the directive END. If following the END statement the
first non-empty line starts with the keyword HISTORY, then the history of
changes of the class is located there. Independently of changes history present
or not, all the lines after the END directive if these are not empty become
accessible from the class code via the pseudo-array of strings DATA[].

If the HISTORY directive is present, then the history should be in
sufficiently strong form. It consists of blocks CREATED/ UPDATED (where the
CREATED can be the first and a single only if it is present). The block header
format is:
(' CREATED' | ' UPDATED ') '(' YYYY-MM[-DD] ')' [',' ' VERSION' '"' text
'"' [' BY' '"'text'"'] ':'

The block consists of messages in form:
(' ADDED' | ' CHANGED' | ' FIXED') ':' ('"'text'"' | identifier)
[',' ('"'text'"' | identifier)]... (';' | '.')

The last message of a block should end with the dot, or it should consist
from the dot only.

Page 28 from 51

28.12.202228

The history of changes can be ended together with the end of the class
text. But in case when the text after the END directive contain also another
information additionally to the history, it should be ended with the special
directive
HISTORY ENDED

E.g.:
HISTORY:

UPDATED(2018-08-15), VER "1.0a":
 ADDED: "This history added";
 CHANGED: "No other changes yet".

IV. Structures (STRUCTURE)

'

Syntax.

STRUCTURE {name|_of_structure}:
 field1
 field 2
 ...
 field N.

Structures are declared in a class body.
Name of a structure is always start from a small letter.
The name can be separated with the symbol '|': the first part is a short

name of the structure. Full name of a structure can not be shorter then 8
characters.

All the structures declared in a class are always accessible for all the
classes importing that class.

A structure contains of:

• fields of simple data types of fixed size (BOOL, BYTE, INT, REAL,
{enumerations}, STR)

• fields of structure types (any other structures in a scope of view but
recursive nesting is not allowed)

• references onto class instances

• arrays of fixed size of the listed above items

• references to other structures (to include their fields into itselves on
the same level), in
form LIKE {structure_type} (or LIKE {Class_name}.{structure} if it was
declared in another class).

A structure declaration is ended with the dot symbol '. '.'.

A structure like a class can contain fields of ant type. But there are
restrictions on fields which are objects of classes:
such fields of structures must be weak references onto objects (and its names
should be ended with the underline character).

If a class field is a structure, it must not be a weak reference since any
variable of a structure type is a single reference onto its structure.

All the structure variables and fields are automatically initialized with a
structure (of the corresponding type), which consists of zero fields (for
numbers these are zeroes, for strings theses are empty, for objects - NONE
values). A NONE value for a structure can be achieved in result of reading from
an array out of its bounds.

Structure is a class without methods, objects of which are always
referenced by a single reference. So when an instance of a structure is
created, it is not possible to use the OWNED BY modifier or >> Array[]
operation unlike for classes.

If one structure variable is assigned to another structure variable, then
the right side of the assignment should be ended with a call to the embedded
function CLONE or Dismiss. In case when Clone is called, the source structure
is duplicated while assigning, in case of the Dismiss the source variable can
become equal to NONE.

Destination=Source.Clone
Destination=Source.Dismiss
Destination=Source_array[i].CLONE
Destination_array[j]= Source_array[i].Clone
Destination_array[] << Source.Dismiss

E.g.:

Page 29 from 51

28.12.202229

STRUCTURE {person|_info} :
STR F|irst_name
STR L|ast_name
INT Y|ear_birthday
{education} E|ducation
STR S|tate_province.

...

{person} Smith|_John={person} (F="John", L= "Smith",
 Y=1950, E='High', S="NY")

A similar constructor can be used to pass an actual parameter to a function
in place of a structure parameter.

When a structure is assigning (to another STRUCTURE variable or field), its
content just is copied.

When passing a structure as a function parameter, it can be used in the
called function only for read, and it is not allowed to change its fields. This
differs from rules of using objects of classes, for which it is possible to
change its fields in a called function.

Correspondently, when assign entire structure to another structure
variable, its possible (and necessary) to call only Clone pseudo-method and not
Dismiss.

A structure can be used as a result of a function. When working with
the RESULT variable of a structure type it is not necessary to initialize it
still it is always initialized by the default NONE-value.

Structures can not be passed as parameters or returned as results of native
(low-level) functions.

A structure can be created with an operator creating a new object of
certain class:
{structure-type-name}(field1=expression, field2=expression, ...)
For example:
{complex} c|omplex_var={complex}(Im=5)

If the FOR loop is enumerating some array of structures then its loop
variable actually becomes a macros allowing to access items of the array, both
for read and write. I.e. if to assign some value to a field of the loop
variable, actually the correspondent array item field is changed:

FOR x IN A[]:
 x.Some_field=Some_value.CLONE;

// in result all the items of the A[] array
 // have field Some_field equal to Some_value

It is possible to assign structure variables of different types but having
so named fields (which are of compatible types):
x, BUT (FieldX1, FieldX2, ...) =y, BUT (FieldY1, FieldY2, ...)

In the left BUT clause it is necessary to list fields from x which should
be skipped (usually, these are fields which are present in x but not present in
y). In the right BUT fields from y are listed which should not be assigned
(usually, these are fields not present in x). In a minimal case when both lists
are empty, the left BUT is written anyway (and without brackets):
x, BUT = y

Methods CLONE/DISMISS are not used when structures of different types are
assigned.

Structure variables can be used with SQL statements (SELECT, INSERT,
UPDATE, DELETE) while working with databases. See more detailed in a section
devoted to the embedded SQL support.

 No assumptions should be made how fields of structures are located in the
operative memory at runtime or about its ordering and aligning onto machine
words bounds. The same is about its sizes in memory and / or mechanisms of
allocating memory for them. Also, any asumptions about their effectiveness (in
comparison with classes or sets of variables declared separately) can be
totally incorrect.

Structures can be actually implemented as objects, or a subset of simple
structures (which do not contain dynamic arrays, strings and object
references), which can be implemented as actual structures in a target
language.

All what really necessary to know about structures are the fact that
structures actually like simple variables are copied while assigned, and it is
not possible to refer to them (using any pointers). Though, while passing them
as function parameters, actually references are passed (but these are read only
like simple data types parameters, and its fields can not be changed in a
function).

The obligatory requirement to use pseudo-functions CLONE / DISMISS is
introduced to provide for a programmer that (s)he always take into account that
in that case data are copied rather then referenced (and changes in a
destination variable will not affect a source variable). This should decrease
amount of errors caused by a misunderstanding that fact.

Page 30 from 51

28.12.202230

V. Testing

Class can contain special functions starting with a keyword TEST in place of
the FUNCTION. Such functions are intended to test and executed always on a
compilation stage.

• If tests are not executed successfully, a class should be marked with an
attribute UNTESTED.

• If not all lines of code were executed on a test stage, the class should be
marked as UNTESTED.

• If at least one statement ASSERT was failed, the class is not compiled
(like there is an error in code).

• If a class should be marked as UNTESTED but it has no such attribute, this
concerned as an error, and a project is not compiled.

• A class can be marked as partially tested using the modifier TESTED(n) . In
such case it is sufficiently to have n percents of lines in code to be
tested.

Which code should be tested:

• All the lines of code.

• All the conditional branches.

A set of tests is concerned to be "covering" only if all the lines which
should be tested were executed during a class testing at least once. If this
condition was not satisfied, the class should be marked as UNTESTED.

All the sections of code in a TEST function should have ASSERT statements. The
compiler can no control correctness of usage of such statements though, so an
absence of ASSERT statements leads just to warnings.

What is not necessary to test:

• Native functions.

• Abstract classes.

• Classes not having methods.

• Methods not having statements.

Therefore while testing a class inherited from an abstract class all the not
redefined methods of an abstract ancestor should be tested to ensure that a
derived class is tested.

It is allowed to place in an abstract class some testing functions with
parameters, intended to test partially (or totally) functions of an abstract
class.

Tests with parameters are not called automatically but these can be called
from other TEST functions. In part if to create such parameterized tests in an
abstract class these can be used to simplify testing the abstract class together
with derivatives of it.

Testing is executing every time when a project is compiling (except cases when
results of the previous testing are saved and the code did not changed from which
the testing code depends, or tests was completely disabled with the key /
$NOTESTS - but this depends on the compiler).

During a cross-platform compiling to some target platforms (Java/Android) the
testing can not be performed on the compiling stage, but using the special
compilation option it is possible to build a special (pseudo-console) version of
the application purposed to run tests only. But integrating results of testing
into the process of compiling is not possible in such case, and results of
testign should be controlled manually.

In case of cross-compiling to the Linux (from the Windows) testing is possible
on the source platform. But it is necessary to take into account, that the
reliability of results is not 100% (still platforms are different, the same code
can give different results on these two platforms). Therefore cross-platform
compiling for Linux is done once for the compiler itself, and later other
projects are building on the Linux using this compiler.

Testing function starts from a header which differs from a function header
by a keyword FUN|CTION.

Testing functions can have parameters but such parameterized tests are not
called automatically: these can only be called from other tests.

Page 31 from 51

28.12.202231

If some additional classes are required for testing functions, it is
necessary to list them in IMPORT statement with the TEST modifiers. E.g.:
 IMPORT, TEST: {String_functions} .

Like other functions testing function also is separated onto sections with
block comments
------------ 'text'

But for testing functions an additional requirement is there: each section
should contain at least one ASSERT statement.

An ASSERT statement is intended to check a Boolean expression value. If a
value in an
ASSERT expression
is false, then assertion is failed. When at least one failed assertion is
present then the class is concerned untested.

The ASSERT statement can have the second (string) argument:
ASSERT x, y - it is calculated and included into the message about a failed
assertion statement to simplify understanding the problem.

VI. Embedded SQL support

If a class has a method Write(STR) , then for its objects it is possible to
use operation

OBJECT << STRING

It is actually just calls the Write method.
In case of class {DB} (which is intended to work with databases), the

operation << should be used to set up an SQL query text.

db << SELECT (*), FROM Students a,
JOIN Students b ON (a.Exam1=b.Exam1),
ORDER BY (Surname, Firstname, Middlename)

db.Open

When a text of SQL is set and string expression is started from one of
keywords INSERT / DELETE / UPDATE /SELECT, then entire expression is treated as
an SQL-like statement which creates a final SQL text at run time. And if not all
but many of parameters of such SQL-like statement are checked at compile time,
minimizing possible problems at run time later.

Such SQL queries a referencing "tables" declared by TABLE declarations (on
base of STRUCTURE s). E.g.:
STRUCTURE {abiturient}:

REAL ID|entity_counter_64bit
STR Surname|_last_name, MAXLEN[40]
STR FirstName, MAXLEN[40]
STR MiddleName, MAXLEN[40]
INT Exam1|_scores
INT Exam2|_scores
INT Exam3|_scores
{date_time} D|ate_in_documents
BOOL OriginalDocuments
BOOL AgreeToEnroll.

TABLE Students|_want_to_be:
{abiturient}
NAME "Students"
COUNTER (ID)
NOTNULL (Surname, FirstName, D)
NAMES (D="DateJoin") .

Queries are similar to SQL but syntax is different a bit:

• All the keywords are written in uppercase: SELECT, UPDATE, INSERT, DELETE, DISTINCT, TOP,
FROM, AS, INTO, WHERE, GROUP, ORDER, BY, IN, NOT, IS, NULL, JOIN, ON, LEFT, OUTER;

• All the parts of an SQL-like statement are separated with comma to simplify splitting long
queries onto lines. E.g:

SELECT DISTINCT, FROM Students, (*), WHERE Graduate_date BETWEEN {d1}, AND {d2}

• A list of selected fields and values as well as lists of grouping and ordered values is
enclosed into parentheses;
The list of selecting values can be placed just after SELECT word (or SELECT TOP(n),
DISTINCT) either after the FROM-JOIN-JOIN -... part;

Page 32 from 51

28.12.202232

• If it is possible, all identifiers first are treated as references to tables, table aliases and
field names. And only in cases when these are not matching correspondent identifiers, these are
attempted to use as AL-IV variables, functions etc. E.g.:

UPDATE Students, SET Exam3=64,
WHERE ID={Ident_to_update}

• If it is necessary to specify explicitly that part of text in a statement is an AL-IV text, the
AL-IV expression is enclosed into figure brackets. In a WHERE clause this is the only way in
many cases to use values calculated at run time;
All AL-IV expressions used directly in an SQL expression should have types INT / REAL / BOOL /
STR / {date_time} / {enumerated} (and should to correspond to field types). Other types are
not allowed (but BYTE in many cases is treated as INT);

• To represent counter fields (auto-incrementing) it is necessary to use type {id}, still usual
integer type precision is not enough to represent long integer value, which are used for
counters in some databases;

• AL-IV expressions are automatically converted to SQL compatible strings, to treat those in SQL
queries as indirect constants. So it is not necessary (and not desirable) to convert these into
strings using such functions as Bool_sql, Int_sql, Str_sql, Real_sql, Date_sql;

• In the INSERT statement, a list of fields and assigned values is specified like in the UPDATE:

db << INSERT INTO Students,
 Surname= {"Origatsu"},
 FirstName= {"Pei"},
 MiddleName= {"Q"},
 Exam1={84} ,
 Exam2={81} ,
 Exam3={92} ,
 D={ Date(2017, 7, 14)},
 OriginalDocuments= { TRUE }
db.Exec

• In INSERT and UPDATE statements it is allowed to specify a variable (or other expression) of
correspondent to table STRUCTURE to set values, instead of listing all the fields and its new
values. E.g.:

db << INSERT INTO Students, BY Rec
db.Exec

• In the previous statement, it is possible to add a clauseBUTproviding a string array containing
names of fields which should be omitted while setting new values, e.g.:
db << UPDATE Students, BY Rec, BUT array[]

• If a query contains more than a single table, the only way to specify additional tables is in
adding JOIN parts just after the first table. In such case, all the tables should have unique
aliases specified to make it possible to reference its fields. E.g.:
db << SELECT FROM Students a,

JOIN Students b ON (a.Exam1=b.Exam1),
 (a.ID AS a_ID,
 a.FirstName AS a_F,
 a.MiddleName AS a_M,
 a.Surname AS a_S,

COUNT (b.*) AS CNT_b),
GROUP BY (a_ID)

db.Open

• Nested queries are allowed in
operations: X IN (SELECT...), X NOT IN (SELECT ...), EXISTS(SELECT...), NOT EXISTS(SELECT...)

• When it is necessary to insert some text into a query, use the pseudo-function SQL(...) which
operand is an AL-IV expression returning a string (or just a string literal). For example:
...
WHERE x IN SQL("(1,2,3)"),
 AND SQL("GetDate()") BETWEEN b.D1 AND b.D2
And the text inserted is always enclosed into parenthesis, so it is possible to write, e.g.:
... WHERE Id IN SQL(List_id[0 TO *].Merge(","))
(not adding string literals "(" and ")" to the list specified.

• Lines of a query can be separated with block comments
------------ 'comment'
Part of a query between such comments can be deleted before executing a query calling the
method Remove_after("text") . This can be used to create queries with a variable code
(therefore the compiler checks the entire code of a query). For cases when it is more
convenient to specify which of such parts should be left rather then directly remove others,
finish such comments with question mark '?' and use the method Allow("text") . And even if the
method Remove_not_allowed did not call explicitly, anyway all the optional parts are deleted
just before executing the query (removing all the text between comments and starting with
comments
-----------'text?' which were not present in Allow methods called before and until the next
block comment or to the end of the query).

Queries INSERT, UPDATE and DELETE do not require results. These are just set
into DB-connection (of class {DB}, let it will be a variable db), and executes by
the method Exec|ute:

db << INSERT INTO Students,
 Surname= {stud.Last_name},
 FirstName={stud.First_name},
 MiddleName={stud.Mid_name},
 Exam1={exam[0]},
 Exam2={exam[1]},
 Exam3={exam[2]},
 D={date_exam},
 OriginalDocuments={ TRUE}

Page 33 from 51

28.12.202233

db.Exec

To obtain an identity value of just inserted record use the method
Identity(STR Table_name, STR Identity_field)==>{id} since the correct way to get
it is different in different databases;

Similar, to get amount of records inserted or updated, it is necessary to call
a method Row_count. But this operation can be not available for some kinds of
databases, so it is marked as DEPRECATED('Depends on database kind') .

When inserting records using the INSERT statement or changing records using
the UPDATE, code can be shortened if to use a capability to insert/update
database from a structure corresponding a database table:
db << INSERT INTO Table_name, BY structure_var
db << UPDATE Table_name, BY structure_var

In such case it is possible to skip some fields which names are listed in a
string array:
db << INSERT INTO Table_name, BY structure_var, BUT null_fields[]
db << UPDATE Table_name, BY structure_var, BUT skip_fields[]

If a base is configured to set values to NULLs by default, all skipped fields
become NULLs.

To obtain results of a SELECT query:

• it is recommended to use a loop in form FOR x IN ENUM db.Results:...;
- in such case it is not necessary to write manually code to check ending
of data requested and jumping to the next record on each iteration still
all these functions are done by the method Results==> BOOL;
db.Open
FOR j|dummy ENUM db.Results:
 id=db.CInt("ID")
 name= db.CStr("Name")

STR r|esults_array[] << "id=" id " name=" name ;
db.Close

• To get results it is recommended to use either a FOR loop with a
preliminary check if there are results actually:
db.Open
CASE !db.Ended?

FOR i|dummy IN [1 TO 999_999] :
 {results_tab} r|esults1 << db
 {results_tab} all|_results[] << r

CASE !db.Next ? BREAK i ;
 ;
;
db.Close

or a loop with a check on each iteration:
db.Open
FOR j|dummy IN [0 TO 999_999]:

CASE db.Ended ? BREAK j ;
 id=db.CInt("ID")
 name= db.CStr("Name")

STR r|esults_array[] << "id=" id " name=" name
 db.Forward ;
db.Close

• If it is necessary to get just a single value as a result of a query, there
is a set of functions Open_VInt_close, Open_VStr_close etc. E.g.:
REAL x|_some_value=db.Open_VReal_close

When getting results selected:

• it is possible to read query results using the special form of the
assignment statement << in which in the left part a variable is specified
of a STRUCTURE type (corresponding to a table selected), and at the right
side a {DB} class variable (or of an inherited data type), with additional
reference to a table, in form:
db.Open
FOR i|dummy ENUM db.Results:
 {results_tab} r|esults1 << db, BY TABLE Students
 {results_tab} all|_results[] << r;
db.Close
In such statement a variable at the left side must not be the same
STRUCTURE type as the base of a table Tab but all its fields must have non-
conflicting correspondence to that STRUCTURE type;

• Either it is possible to use methods of class {DB}: VInt(n), VReal(n),
VStr(n), VDate(n), VId(n) passing an index of a value selected;

• Or to use methods CBool(name) , CInt(n) , CReal(name) , CStr(name) ,
CDate(name) , CId(name) passing as a parameter a field name constant string
(these methods are restricted allowing passing only constant string
parameter name). And, this variant is still effective: these methods have a
hidden parameter which allows caching a found index of a field selected. In
result, from the second call actual value is obtained using a numeric index
cached, without searching it again.

• There are also methods VNull(n) and CNull(name) returning logical "true" if
the value obtained for the field is NULL.

Transactions are implemented via the PUSH-method Transaction. It can be called
only in the header of a PUSH block statement:

Page 34 from 51

28.12.202234

PUSH DB.Transaction :
FOR sel IN Containers.Selection[] :

 DB << UPDATE Package,
SET Barcode = {E_Barcode.Text},

WHERE Packid = {Containers.[sel,
 .Columns[].Count-1].Id_from}

 DB.Exec
 ;

CASE !DB.Commit ?
 Main_.Handle_error(
 "{Containers_param}.value_change(E_BARCODE)")
 ;
;

If code was successfully executed until the ';' finishing the PUSH block, then
(dependently on the fact if a Commit or Rollback was called, and which of them
was called last), operation either is finishing successfully (operation
"commit"), or all changes were reverted (operation "rollback").

To prevent from the programmer to "forget" writing Commit, the method
Transaction has the modifier WAIT(Commit, Rollback). So, if there were no such
calls in a PUSH Transaction block, the compiler generates an error.

There are syntax diagrams below for statements generating SQL queries:

Page 35 from 51

28.12.202235

Page 36 from 51

28.12.202236

VII. Additionally

The AL-IV programming language supports localization of strings via pseudo-
functions in form of
_identifier("Red square") or "Red square"._identifier

This construction looks like a function call but it is not a call to a
function. But it tells to a compiler that a sting "Red square" should be placed
into an array of localized strings, remember its index in the array and use it to
extract the string from the localization array. Actually, another string can be
extracted, if it was replacing the original one in result of working of
localization operations.

All the names of such string resources (pseudo-functions) should be unique in
a class.

A special class {Localize_str} is suggested to control localization process
(though this is not obligatory and it is always possible to write another class
to do this).

When using the class {Localize_str}it is necessary at least once (on an
application initialization) to call a static method Localize, specifying a
localization language short name. It is supposed that the name of a current
language selected an application itself is storing at some suitable place (e.g.
using the class {Configuration}). To simplify a setup an application to allow
selecting a language by user, a method List_languages is provided returning a
list of full and short names of available languages (semicolon separated)
extracted from names of language files (supposing these have names in form like
English_EN.lng).

The method Localize has an additional parameter Prefix which allows
translating not all the strings, but only those having names starting from a
certain prefix (the Prefix is provided without leading underscore character). An
empty string means translating all the strings independently of resource names.

When the Localize method is called it is first is calling a
method Save_untraslated, if it was not called before from the application. A
translator always can found the primary language file saved by this method, make
a copy from it, rename it to Some-language_SL.lng and edit it. Strings which
should be translated has a form NAME=Value. It is necessary to replace only
values leaving names as is. An edited version of a language file should be saved
in UTF-8 format.

By default a directory where an application is located is used as a place to
store language files. Or if it is impossible to write there a special application
data directory is used. Or it is possible to set such directory explicitly
(calling Set_directory_lang).

It is important that if new strings to translate were added while developing
an application, then these are spread not only to an original language file
stored by Save_untranslated but to all other (already translated) language files
(though not yet translated).

The AL-IV supports translation of its keywords from any human language. For
this purpose a localization technique (from above section) is used partially.

All the English keywords are stored in a text file Default_.lng in a directory
with source files of the compiler. It is sufficient to copy this text file,
rename it e.g. to Klingon_KL.lng and replace string values from English to some
other. Language keywords have names starting from the letter "K" and these are
mainly in the section [{Translation_to_canonical_keyword}].

Page 37 from 51

28.12.202237

To use national keywords in your code, a class should be started from a
specification ['KL'] or [Language='KL'], following which the first keyword
(CLASS) is already translated into the language specified.

Since a translation language can have some word morph rules or have some
variations depending on a lexical context, especially for keywords it is allowed
to relate to a single canonical keyword more then a single identifier.

A translation can have a form of several word sequences comma separated, where
each sequence have a form root|suffix1|fuffix2|..., and any suffix can have a
space or start from a space. In result, all the words root, rootsuffix1,
rootsuffix2, ... are corresponding to the keyword specified (and a space in a
suffix means that two identifiers spaces/tabs separated are treated as the target
keyword, too).

Together with the language keywords, encoded characters are translated (#NL,
#TAB etc.) and some embedded pseudo-functions such as (.Index, .Len, .Str). And
it is allowed to translate whole classes to national languages. To do so, for a
translating class a special mirror class is created which have a single
modifier TRANSLATION OF {Class_name}. It contains only translations for fields,
functions, methods, enumerations, structures, constants, placed in correspondent
sections.

Then it is sufficient to include such translation class into import and call
its methods, functions, fields etc. using translated names.

A class format for a translation class, in form of a diagram:

A modifier STORE for a method creates hidden (for a caller side) integer
parameter which value is stored on a caller side.

A name of a parameter is specified in parenthesis, and also its initial
value can be specified additionally:

, STORE(Name=value)

For each method call in a calling class a hidden integer field is created
for the stored parameter, and this field is passed to the method by a
reference implicitly. Passing by a reference means that if the method changes
a STORE-parameter, then after it is finished, new value become the value of
the hidden field. And on the next call of the same method in the same line of
code, this new value will be passed as an additional parameter.

Page 38 from 51

28.12.202238

To reset stored hidden parameter values it is possible to call a method
having a modifier FORGET. Stored parameters created to pass them to methods
of the same class as the FORGET method will be set to its initial values
(specified in the STORED modifier).

Modifiers STORE and FORGET together allow speed up a lot accessing data
arrays indexing by constant strings. E.g., while obtaining values of fields
of records in SELECT results from database, or while accessing items and sub-
items of a list view by headers of columns.

An example of accessing listview by column names:
FUN Cells|_by_constant_names(

INT Row|_index,
STR Name|_of_cell) ==> STR , STORE(I|ndex_of_name = -1),

RESTRICT Name IS CONST
 :
CASE I < 0 ? I = Column_index(Name) ;
RESULT = Subitems(Row, I) .

In the above example, the FORGET modifier should be assigned to all the
methods changing columns set and its names. The advantage in speed of the
version with STORE in contrast to usual method can differ by orders of
magnitude since searching of an index is performing only on the first call of
the function.

While your classes and libraries are developing, you can find it necessary
to re-write some things. Some functions, fields and so on becomes too old,
supporting it costs more and more, some things are replaced with others etc.

To make it possible to control on a language level of a process of a
distinction of old entities and provide smooth transition to new features,
following modifiers are added to the AL-IV:

DEPRECATED ('text') and ABANDONED ('text') .

• These modifiers are applicable to classes, structures (STRUCTURE),
fields of classes and structures, enumerations and functions.

• A text in parentheses (and apostrophes) should contain a name of an
alternative or at least a short clarification why the feature is marked
as DEPRECATED or ABANDONED).

• Modifiers ABANDONED and DEPRECATED are mutually exclusive.

• It is suggested for all things become obsolete to add a
modifier DEPRECATED, and keep it until the feature become not supported
at all, and then replace it to ABANDONED.

• When a deprecated feature is used in code, a compiler generates a warning
containing the text specified in the modifier.

• If the modifier ABANDONED is added then correspondent feature can not be
used: compiler will generate an error. For an abandoned function, it is
possible to remove its body, for abandoned class - to remove bodies of
all the functions.

• The sense in storing information about abandoned features in a class code
is in providing an information about an alternative (in the text in
parentheses which should contain name of such alternative function, class
or other way to get desired functionality).

There is another possible usage of modifiers DEPRECATED and ABANDONED:
these can be used an inherited class to refuse from same functionality of the
predecessor class, since it is not working in the descendant class.

For example the class {Dialog} which is a descendant of the class {Form} do
not use the method Show which is declared as ABANDONED('Show_modal') . This is
done so to prevent a programmer using incorrect method to show a dialog form.

Unfortunately the message from the compiler will not be firing in case when
an instance of the class {Dialog} is assigned to a variable of the
class {Form}. In such case the abandoned method actually will be called (and it
just will be ignored since an abandoned method always overriding the ancestor
method replacing it.

A function can have modifiers RESTRICT (unconditional restriction on a
parameter) and IF/ THEN modifiers (conditional restrictions on parameter values
depending on values of other parameters).

• All such restrictions on parameters are written following all other
function modifiers.

• Amount of restrict modifiers is not restricted.

• If a restriction is specified for a parameter, or the parameter is used
in the IF part of a conditional restriction, then it is possible to pass
only a constant as a value of such parameter. The only exclusion is a
special conditional restriction
IF parameter IS CONSTANT, THEN...

• Restrictions on parameters are controlled by a compiler at a compile
stage. If conditions specified in restrictions are not satisfied, the
compiler fires an error.

• A parameter can be restricted or participate in a condition of a
restriction only if it has a simple data type (BOOL, BYTE, INT, REAL,

Page 39 from 51

28.12.202239

STR or a enumeration - ENUM) it has a enumeration data type, and is not
an array.

Unconditional restriction has a form
RESTRICT parameter_name IN [list_of_values]

or (for REAL data type):
RESTRICT parameter_name IN [N1 TO N2]

or (without specifying certain value):
RESTRICT parameter IS CONSTANT

• When a range is used (for real values), a condition is checking N1 <=X
<=N2, where:

◦ X - a value passed to a function,

◦ N1 and N2 - bounds of a range[N1 TO N2].

• The last variant does not specify any value checks but requires passing
only a constant value as the parameter specified.

A conditional restriction has a form:
IF parameter1 IN [list or range],
THEN parameter2 IN [list or range]

or part IN [...]can be replaced with IS CONSTANT .

• Both parameters listed accept only constant values (except the
case IF parameter1 IS CONSTANT).

• If a condition in the IF part is satisfied, then a condition in
the THEN part must be satisfied to avoid compiler errors.

• If the IF part condition is not satisfied, then the THEN part is just
ignored (but the parameter 2 anyway can accept only a constant).

 When this can be useful?

E.g., to implement wrappers to the OpenGL library. It is possible to
simplify the work just creating simple wrappers to correspondent OpenGL
functions and pass just integer constants, but to add restrictions for such
parameters to provide checking for only allowed sets of constants. This is much
more simple then to create a set of classes or to use enumerated values (since
the same values can be used in different functions for different purposes).
Restrictions are providing working of classic OpenGL code (e.g. samples from
NeHe etc.), almost without any changes (it is sufficient to remove symbols ';'
at ends of lines).

a. On each iteration of any loop, an internal global counter is decreased. When
it becomes equal 0, an internal procedure is calling which restores that
counter to an initial value (usually 65536), and an additional function can
be called in such case.

b. For visual applications having graphics shell after sufficient time of long
operation execution (usually more then 2 seconds) a progress of the
operation can start displaying which is showing a percentage an a
description of the long operation. And it is possible to cancel the
operation by a button on the progress panel.

c. In case when a programmer did not provide such long operation therefore
pressing a button or a menu always is considered as a start of possible such
long operation by default. So for such operation also it is possible to
display a progress automatically allowing to cancel the operation if it
becomes to work too long.

a. Functions can have the modifier INLINE. This is an instruction for the
compiler to insert the function code in place a call of it.

b. If the optimization is on, the compiler itself can replace calls of some
functions to its immediate code for sufficiently short functions or for
functions used only once. The compiler option/!autoinline disables such
automatic in-lining (but do not prevent in-lining functions marked with the
modifier INLINE).

c. In some cases functions can not be in-lined. E.g. it is not allowed to
INLINE methods of another classes, or functions of another classes which use
declarations not imported in the target class. Also, it is not allowed to
in-line the code having statements ==> , BREAK or CONTINUE.

d. In some cases, in-lining of functions can lead to degradation of
performance. E.g. if several functions having many local variables are in-
lined into a single function, then its total amount of local variables can
become too large. Since in AL-IV all the local variables must be initialized
before running the function code, using such function very often (e.g. in a
loop) can lead to slow down of the execution.

a. FOR loops based on a range defined by constant values can be totally
unrolled with the modifier UNROLL without parameters (but amount of
iterations should not exceed some limit defined by the compiler, current

Page 40 from 51

28.12.202240

limit is 1024 for C#, Delphi and Free Pascal). An example of code:
FOR i IN [0 TO 19], UNROLL:...;

b. Any FOR loop can be unrolled with an unroll factor specified in
parenthesis. The unroll factor should be an integer constant not less then
2.

c. While unrolling a FOR loop, total code size can increase but execution time
mostly reduces. But in some cases the performance can reduce rather then
increase (in case of C#, this may be a result of its code optimizer which
may be can not handle long code sequences).

d. The compiler option/!unroll disables any UNROLLs for FOR loops.

a. If there are several sequential assignments in code (or append to a
string or to an array) with the same destination variable, then in following
statements can be replaced with the.. symbol (two dots). Note that in case when
the destination is an array (in an append statement array[] << item), then it
is not allowed to omit brackets. For example:
A[] << item1 << item2 << item3
..[] << item4 << item5

Lines of code with such continued assignments are not accounting while
restricting amount of statements in a block, and amount of continued
assignments/appends is not limited. And it is allowed to add other language
constructions in between the stating statements and continued statements (and
between continued statements, too), if such statements are not assignments/
appends. E.g.:
A[] << item1
CASE condition? ..[] << item2;

b. If the target was an object, following assignments to its fields can be
replaced with three dots (first two replacing the object, the 3rd - is the
normal dot):
B|utton_ok=New_button("OK", "OK")
...Set_width(50)

c. It is allowed in case of an assignment to a filed specified after a
chain of dereferencing operations (separated with dots, e.g. A.B.C(params).D
[index].E), to specify also which field will be a target for following
continued assignment/ append statements. For this, instead of a dot in a
correspondent position (after the default target field replaced later with
double dots), three dots symbol is used. E.g.:
A...B.C[] << item1
...Calculate(param) // equals to: A.Calculate(param)

d. If in a single expression there are several sub-expressions of form A.B
[index].C(params).D, and then entire chain is replicated (except the last
field) then the second and following sub-expressions can be written in very
short form: .E, .F etc. Note that leading operation signs like '-', '!', '~'
are not parts of such expressions and should be written. E.g.:
P=pt1.Offset(-PBox.Bounds.Loc.X, -.Y)

e. In DEBUG statements it is allowed to omit the colon symbol just after
the keyword DEBUG and also to omit << symbols if the first statement is the
console output with the first operand which is a string literal:
DEBUG "test" ;

f. In console output statements (<<) concatenating operands are
automatically converted to strings if the compiler successfully can find a
conversion function S|tr|ing (this is almost always correct for integer and
real values);

g. A function, which result is defined by a single expression can be
written in a very short form:
FUN name|_of_function(...) ==> {type_of_result}:= expression.

(And the space is not required between ':' and '=', symbol ':=' is allowed
too).
But, if the function is returning a new object of a class derived from the
resulting value class, it is therefore required to use standard assignment:
RESULT={Class}(initializations)

The reason why such "embedded" functions exist is that it is not possible
staying in the language rules frames to define strictly their parameters/
results. E.g. the syntax & semantics do not allow to specify a parameter as "an
array of any type". At the same time it is convenient to have a set of same
named common functions to manipulate with arrays independent of its items
types.

Note: with introducing functions "overloading" the main such reason can be
partially eliminated. But therefore there is a problem to refer to "any
structure" or "any enumeration" type: the AL-IV is not ready to supply such
templates.

Since all the functions in the below table are static, these can be called
either in the classic form foo(x, y, z) or in the prefix form x.foo(y, z).

Function Definition Group

Page 41 from 51

28.12.202241

Index(Variable) ==> INT The index of the current item in a FOR

loop, when the Variable is enumerating all

or part of array

loops

Name({enum} Item) ==> STR An enumeration item name. E.g., "'RED'" enumerations

First({enum} Item) ==> {enum} The first enumeration item

Last({enum} Item) ==> {enum} The last item

Prev|ious({enum} Item) ==> {enum} The previous item

Next({enum} Item) ==> {enum} The next item

Int({enum} Item) ==> INT Convert the enumeration item to an integer

(an index of the item based on 0)

Int(STR S) ==> INT Get an integer from a string strings

Real(STR S) ==> REAL Get a real value from a string

Len(STR S) ==> INT String length

Find(STR S, STR W) ==> INT Search an index of the first substring W in

the string S (0... Len-1 or -1, when there is

no such substring or W== "")

Str({INT,REAL,BOOL}) ==> STR or S

({INT,REAL,BOOL}) ==> STR

Convert value (BOOL/BYTE/INT/REAL)

to the string.

Count(A[]) ==> INT Amount of items in the array arrays

Allocate(A[], INT Size) Allocating additional items to provide size

of the array to be at least given Size. If the

size of larger already, it is not changed.

Find(A[], W) ==> INT Search an index of the first item W in the

array A[] (except a structures array). The

result is between 0... Count -1, or -1 if not

found.

Insert(A[], INT I, V) Inserting the value V at the position I in

the array A[]

Clear(A[]) Clear the dynamic array A[]

Delete(A[], INT I) Deleting the item at index I

Remove(A[], V) Removing all the values V from the array

Swap(A[], INT I, INT J) Exchange items with indexes I and J

Int(REAL X) ==> INT Truncate the fractional part of the real

value

real numbers

ShiftL(INT N, INT K) ==> INT Logical shift the N onto the K bits left (if

the K<0, shifts onto -K bits right). Bits

shifted out are lost, zeroes shifting at the

right side.

bitwise shift/rotate

operations

ShiftR(INT N, INT K) ==> INT Logical shift right.

RotateL(INT N, INT M) ==> INT Cyclic shift left by 1 bits of lower M bits.

RotateR(INT N, INT M) ==> INT Cyclic shift right

Clone({structure} structure) ==>

{structure}

Copying a structure structures

Dismiss({structure} structure) ==>

{structure}

Releasing a structure from its previous

store, returning the structure

All the embedded functions can be identified by capitalized names, e.g.: A
[].COUNT

Generic (or overloaded) functions have parameters with variant types of
parameters (and sometimes of the RESULT).

A type of a parameter (and may be, of a result) can be represented with a
list of types enclosed into parenthesis. E.g.:

FUNCTION Min|imum_of_two_values(
 { INT, REAL, STR} A|_operand,
 { INT, REAL, STR} B|_operand) ==> {INT, REAL, STR}

 :
CASE A < B ? RESULT = A ==> ;
RESULT = B .

Rules:

1. Only static functions can have variant type of parameters/result, at
least, one parameter should be of such type.

2. It is not allowed to define only result to be of the variant type: at
least one parameter also should be of such type, too.

3. All the parameters (and if the result is of variant type, then it is
too) should have the same amount of variants in lists of types. The order of
variants also is important, and all the types with the same index creates a
version of the function with certain set of types of parameters/result.

4. The first parameter having variant types list should have all the types
in the list different. To decide which version of the generic function is
called the first parameter type is analyzed.

In the body of a generic function special variant of the CASE ? statement
can be used which branches are defined not conditions or values but of types of
the first input parameter with variant types:

Page 42 from 51

28.12.202242

FUNCTION S|tr|ing_from_rect_or_point(
{STR,{rect},{point}} V|alue_to_convert) ==> STR
 :

CASE ?
{{ 1/STR }}: RESULT = V
{{ 2/{rect} }} : RESULT = S_rect(V)
{{ 3/{point} }}: RESULT = S_point(V) ; .

The list of variants determining a branch of such conditional statement
contains of items N/type where N is an index of the type in the list of types
of the parameter (starting from 1), and type - is the corresponding type of the
first variant type parameter.

Like in case of enumerations as conditions, the ELSE branch can not be used
and all the variants of types should be used.

In differ from usual code, while compiling each variant of such "generic"
function, all its branches not corresponding to a currently selected signature
are just ignored. So, all local variables declared in such branches become
"invisible" for other code.

When such overloaded function is called the compiler searches it between
available functions by name(s) and signatures of variable type parameters.

It is possible to declare a single method which name is replaced with the
dot '.' and parameters are listed in square brackets: so called.[]-method. To
call such method for an object X, following like-array-access notation used:
X.[indexes]

Additionally if for such method a setter method is declared, then such
method can be used at the left side of an assignment statement:
X.[indexes]=value

Such methods are used e.g. to implement multi-dimensional arrays like in
class {Matrix|_of_REAL}:

-------------------------------- 'access Items[] via .[i, j] method'

METHOD .[INT I|ndex_from0, INT J|ndex_from0] ==> REAL
 :

CASE J < 0 || J >= NColumns ? ==> ;
INT i_j INDEXING REAL = I * NColumns + J
RESULT = Items[i_j] .

METHOD set_items(
INT I|ndex_of_row_from0, INT J|ndex_of_column_from0, REAL Value|_to_set),
SETTER FOR .[]
 :

CASE J < 0 || J >= NColumns ? ==> ;
INT i_j INDEXING REAL = I * NColumns + J

 Items[i_j] = Value .

In the article devoted to functions declaration syntax, operators was
already specified (shortly). Now more detailed.

Operator is a static function purposed to be called in place of four
arithmetic operations: +, -, *, /. Its declaration differs from the declaration
of a usual function:
OPERATOR {type} operation {type2}==> {type3}:....

E.g.:
OPERATOR {complex} * REAL==> {complex}:....

Additionally to operators with two operands, also the operator can be
defined for the operation '-' with a single parameter:
OPERATOR - {тип}==> {тип}:...;

At least one of types of input parameters should differ from basis types:
BOOL, BYTE, INT, REAL, STR. This can be a structure, a class or a enumeration.

To use operators in a function, it should have the modifier
OPERATORS({Class_name}) , where the {Class_name} specifies the class where
operators used were defined. If there are several such classes (which operators
are used in the function), it is necessary to list all the classes separated by
columns:
OPERATORS({Class1}, {Class2}, ...).

Parameter names in the declaration are omitted but names A and Bare
supposed for two input parameters. And for single parameter operator (for
operation '-'), this parameter is referenced as A, too. And RESULT is used for
returning value, as usual for all functions.

A class containing OPERATORs defined, should have the modifier OPERATORS.

An example of the operator code:

Page 43 from 51

28.12.202243

OPERATOR {Matrix} * REAL ==> {Matrix}, NEW
 :

RESULT = New_matrix(A.NRows, A.NColumns)
FOR i IN [0 TO RESULT .NRows-1] :

FOR j IN [0 TO RESULT.NColumns-1] :
RESULT .[i, j] = B * A.[i, j] ;

 ; .

Multi-threading in the AL-IV is implemented by the class {Thread}, but it
provides full data isolation of one thread from data of other threads. Any
objects passed to a thread totally disappear from the address space of a thread
which passes those data: all the references (both strong and weak) are remapped
to NONE-objects of corresponding classes for all the time while these are on
another side. And tha main way to check if the object actually handled:
periodically check if it is still equal to NONE. When not, the handling
finished and the object been waiting returned back.

Threads form a hierarchy: if A runs B, then A becomes the master of B, and
B depends on A. If the A is finished, B still can continue working but it can
not more pass handled objects back: these just auto-destroy in such cases.

The thread object when it is started also disappear actually from the
memory of the master thread as an object. But on the side of A, a phantom
mirror object is created for it, and references from the original B object are
redirected to that phantom object which can be used as a controller. The master
thread can get from the controller some information about the status of the
thread started (Running, Stopping, Terminating), to pass other objects to its
input queue of objects (Take), give commands (Stop, Wait).

To implement some process executing in a separate thread, it is necessary
to inherit your own class from {Thread} and override the method execute. If
the thread gives objects for handling them, it should use methods receive and
yield (the last to pass them back when these are ready). The yield method can
also be used to pass newly created objects, not only received from the master
thread.

Sometimes it is desired to get additional info on a progress of executing a
task running in a thread running. E.g. to indicate a progress of executing the
task in percents. In addition to a regular method of creating objects on the
task side and sending them to a master thread (yield), it is possible to use
the class {Global_var}. It is platform dependent, but it allows to create,
modify or read integer named values from any thread running very simple,
without locks.

Native functions can be only static (not methods). These should have the
modifier NATIVE. It is not allowed to use structures as its parameters or data
type of the RESULT value. Therefore, objects of classes are allowed.

There are two main variants of native functions: containing only native
code, and having both normal AL-IV code, and ended with native code (allowing
to prepare some parameters in local variables, or check some conditions and to
prevent running native code if necessary).

In the first case either string constant or named string constant is
following the colon ending the function header. If a string constant is
written, it can be multi-line, with the prefix symbol '@' (adding the new line
symbol #NL after each line continued).
FUNCTION Writeln_number|_only_positive(INT N|umber_to_writeln), NATIVE: @
"if X_N < 0 then Exit;"
"writeln(IntToStr(X_N));" .

If a named constant is used, then the keyword NATIVE must be written first:
FUNCTION Some_native_fun, NATIVE: NATIVE NATIVE_string_constant.

In the second case, first the AL-IV code is written:
FUNCTION Writeln_number|_only_positive(INT N|umber_to_writeln), NATIVE:
 CASE N < 0?==> ;
 STR s|tring_to_writeln=N.S
 NATIVE @
 "writeln(X_s);" .

In both implementations of the function Writeln_number above, the first the
parameter is checked for negative value. And both examples do the same result.

The content of a string constant specified as the native function body, is
inserted into resulting code almost without changes. And this should be the
code on a target programming language. But some peculiarities can be there
depending on a target language.

E.g. for the Pascal, the first lines starting from the keyword ' var' are
treating as declarations of local variables and these are inserted before the
keyword ' begin' which is starting final code of a translated native function.
(Actually, if the first line is starting from the ' var', then all the first
lines until the last one starting from 'var' are inserted in the declaration
section. Including all intermediate lines even not starting from ' var'. This
allows use e.g. conditional defines in the declaration section).

In all cases, for native functions returning a result, the local
variable RESULT on the enter point to a native function code, is already
initialized with a NONE -value (for numbers - with 0, for strings - with the
empty string). So, returning from a native function without assigning any value
in a code passed with a string, will return such NONE value as a function
result.

Page 44 from 51

28.12.202244

To access it own parameters and local variables, native function in its
body (in the string constant) should add the prefix 'X_' to its names. To work
with objects and its fields and methods it is necessary to know exactly how to
access them in a native code. Usually, fields get prefixes 'F_', methods and
functions - 'M_'. Take into attention, that some programming languages do not
matter about letters registry case (so, names 'a' and 'A' are equal in the
Pascal).

It is possible to find a lot of examples of native code for C#, Pascal and
Java in the functions library.

Classes containing native functions should be marked with the
modifier NATIVE. It is desirable to avoid writing native functions except this
really necessary (to optimize for speed critical parts of code, or to access
system functions available only from native code).

VIII. Why one more programming language is

necessary?

Yes, it is always possible to create applications which really are multi-
platform. To do this, it is necessary to select a language (C++, C#, Java,
Pascal) and to use some framework (or classes library). On that way a lot of
adventures and disappointments.

Adventures - because authors or these languages and frameworks very often have
its own mind about what is important and what is not necessary for you. They go
ways which were not known for you before. Be ready that to solve a tiny problem
you will spend weeks digging entire Internet, reading dozens of forum pages etc.

Disappointments - because sometimes you will have to redesign entire project
removing desired features due to restrictions of a selected tool. Or even stop
using the tool and to search another more comfortable (may be more expensive),
and then to re-write all earlier written code.

And what fundamental distinction of the AL-IV in case of multi-platform
support, if it is just an extension over one of existing programming languages
(under C#, or Delphi, or Free Pascal, or Java) ? The peculiarity of the Al-IV is
that it is initially is not oriented on a certain platform.

You write your Al-IV code only once. And to launch the application on another
platform it is sufficiently to correct configuration files of a project and to
call the compiler.

It is just necessary to provide a support of a desired platform. Fortunately,
there are not too many platforms. There is a probability that in a finite time we
will have support of all the desired platforms.

For this moment (June, 2019) the platforms supported are:

What if one if branches supported disappear suddenly (e.g. a desired target
platform become not supporting or a developer tool become more expensive to pay
for it) ?

There is an answer on that question. It is in the simplicity of the AL-IV.
The compiler for it (which is compiling to a some intermediate language) can be
prepared for a short enough time. It is always possible to return to a code
generation for C++/Java/Python/... or to make another generator. A task of
creating wrapper native classes implementing base libraries functionality for a
certain platform can be harder. But this also can be solved since base library
also is simple enough and projected to simplify such task as much as possible.

Page 45 from 51

28.12.202245

Actually all the modern programming languages were developed from ancient
primitive assembling languages, allowing not safe operations, address arithmetic,
not controlling array bounds etc. There are no existing high level programming
languages in which it could not be possible to get an exception in result of an
erroneous access to a zero address or in some hard cases to corrupt an arbitrary
memory block.

You can use so called "managed" memory (in C++ this i an option, in C# the
most of objects are in such memory), or to use none-objects (in the Objective-C).
But part of code always will be written in a not safe old style, and you could
not fix this (even in case if that code is yours). Even in modern C# and Java you
are not free from necessity to provide checking if an object passed to a function
is equal to null, or to provide exceptions handling in your code.

In case of t AL-IV, the situation is different totally. On the compiler level
(and the Alfour language itself) an index value is checking for a bounds when an
array is accessing (providing dummy item or ignoring write to the array operation
if bounds are exceeding), accessing unassigned objects, it is guaranteed
initialization of all the variables, it is preventing infinitive looping and
recursion.

There are there embedded testing capabilities (with a control of a covering of
code with tests). Programming with AL-IV really become relaxing and regular work,
without extreme and adventures.

Exclusions are not possible in the AL-IV. When developing native methods/
functions it is recommended to follow this paradigm providing in the final code
in case of an exception handling it to provide working with it in a style of
post-handling (when errors just are collected in a system array and can be
accessed later by a final code, just to get know if there were errors while a
function was called. In many cases it is sufficient to make a message about
errors or just log it, and it is not necessary to crash).

Really, it is always possible to stay in frames of some of existing syntax
rule set, but to change semantics.

While developing new syntax the main purpose was to simplify working with
source code using an arbitrary text editor (supporting UTF-8, this was an only
requirement for such text editor).

It is actually from here a requirement to write keywords only in the UPPER
CASE. In such case source code is much easier to read (and too hard to edit).

What about an absence of a starting bracket of a block statement, and a
special symbol ending each simple statement. The absence of these makes text more
clear, and simplifies editing it (for operations like re-factoring). And this
does not make reading harder.

What about restrictions on amount of nesting blocks, on amount of statements
between block comments. These restrictions do not effect a programmer freedom a
lot. When we have too many nesting levels, this make code harder to read and
understand. When using several indentation levels, accessible line width becomes
too small to fit sufficiently long statements, and we have more often to split
lines of code. So, the requirement to move deeply nesting blocks of code to outer
methods/functions is very correct and useful.

It is not hard at all to split too long sequences of statements Separating
these with block comments i not too hard requirement at all.

The only question left is about a restriction on three only parameters for AL-
IV methods/functions. Initially, when such requirement was introducing it was
supposed that if the rule become too hard to follow it, this can be changed or
removed at all.

But while developing sufficiently complex applications (such as the al-IV
compiler, its IDE text editor and some other) this was found that the requirement
is not impossible to satisfy, and very useful to make developing easier. For
functions/ methods having not more then 3 parameters it is mach simpler to
remember its parameters rather then to use special IDE to pop-up help on method
parameters each time it is used.

The restriction finally was removed and replaced with a requirement to specify
parameter names in form of assignment (at least from the fourth). But this was
done just to simplify code re-factoring (by moving pieces of code from internal
blocks out to separate functions) and adaptation of code earlier written on other
programming languages.

Loops of form "while" / "repeat...until" are not safe, since these can lead
to infinitive loops without any chance to leave such loop.

Loops of form FOR i IN [...] are safe for that since these earlier or later
but finished (it is possible that it could be a lot of time but not the
eternity).

While programming in the ALfour, in place where it could be suitable to use
"while" in other languages, use instead the FOR statement setting as a range
(for example) [0 TO N] where N is a maximum possible amount of iterations. And
the first statement of such FOR statement should be a conditional BREAK on the
anti-condition of the loop continuation:
CASE !continue_cond ? BREAK i;

Page 46 from 51

28.12.202246

Since the time when a heap of dynamic data was invented, there were only one
actually new useful change in memory management: automatic objects destroying on
its usage counter value becoming zero.

Therefore it was found immediately that in many times closed chains of
references can be created (references from objects to objects increasing its
usage counters), which in result prevent objects from automatic freeing still its
usage counters never achieve zero value. To fix the problem the so named garbage
cleaner was introduced. Unfortunately, such procedure translates all the systems
built on base of this technology for releasing actually unused objects into a
category of slow and unpredictable. And this means that such programming
environments can not be used to create real time systems or even to use in time-
critical systems of mass service.

Yes it is always possible to refuce for critical subsystems from the managed
memory and to develop in the old style directly controlling all the memory usage.
But in such case totally disappear all the advantages of automatic memory
management. And this is much more difficult still programmers usually do not do
all the work from the scratch but use external libraries of classes and
functions. If they can not use automatic releasing objects, then in many cases
these should refuse from a lot of libraries. In result, capabilities of
programming become restricting, and developing become more expensive and slow.

It is contrary another situation in case when you can use automatically
releasing objects but it is not necessary to refuse from real time systems
developing. Still a garbage cleaning is not necessary, objects are releasing
exactly at the moment when this is necessary. Is not this a dream for a
programmer.

Certainly in case of new way it is necessary to change a bit a strategy of
objects creating. At least a programmer should think about a life time of an
object at the point where it is creating. And we should reserve arrays to store
references to dynamic child objects. But this is not too great loose in
comparison to a possibility to refuse at all from the garbage collector (and from
the garbage in the heap).

Really, how a desire to make the programming language as simple as possible
is combining with embedding of a direct support for SQL expressions?

An answer is following: such support allows to check a lot of SQL semantics
on the stage of compiling (rather then at run-time).

Among them we can check: a correspondence of field names in queries to real
fields (declared in TABLE definitions), a correctness of its usage (null
fields, auto-increment fields, which could not be set in UPDATE statement). And
certainly to check the SQL syntax, too. Such checks are done on a compiling
stage reducing a possibility that a program which works with data bases, can be
run with explicit errors in SQL code.

Such principal - a possibility of a static analysis of a correctness of
operations on a compiling stage - makes developing much simpler. Unfortunately
what is concerning SQL in modern programming such principal is not applying
though working with data bases is one of key technologies in a modern practice.
In the AL-IV this is fixed.

In differ to a generic programming the embedding some specialized features
into the language (such as SQL, or complex numbers) actually do not increase a
minimal necessary programming level.

While writing the code, you just do not use such features, and even could
be not know about these existence. While reading an alien code, you should to
learn the possibility if you found it in the code.

But learning some additional possibility is much easier than:

• to get know rules of writing generic functions/ methods/ classes;

• to learn a certain definition of a variable declaration and operations
with its data type, programmed in a certain generic class including:

◦ methods,

◦ redefined operations,

◦ data type conversions,

◦ and often in combination of inheritance from other generic data
types.

Because this makes your code simpler (and minimizes amount of errors lead
from using in calculations of data of almost the same type but with different
data precision).

In many of modern programming languages it is possible to define data types
dual ways: for values for which the precision is not important, a base data
type is used (e.g. Integer). But in cases when it is not enough or otherwise if
it is necessary to economy memory, data types with special precision are used
(Int64, SmallInt, ShortInt).

In result, a lot of data types and its combinations are present in a code.
And we have to take into account situations when a precision of one variable or
result of some calculations is not enough to fit in another variable.
(Actually, nobody takes into account such things, instead if a possibility is
to get incorrect results, then such erroneous results will be obtained, without
any reasonable explanation, what was occur and how it can be fixed).

Page 47 from 51

28.12.202247

Why such thin specifications are necessary if these are just used actually
to economy memory. It is much better to reject from those forever, making life
simpler for a programmer since he (she) has not to decide each time which
variation of a type to use now.

By similar reason there are no unsigned data type in the AL-IV (like in
Java, too). And it is not possible to specify bit depth for each variable
separately. Only for all the integer or real numbers in a program, specifying
compiler options (/int32, /$REAL=EXTENDED/DOUBLE/SINGLE).

This type became too old and it is not actual for modern conditions. In
case of using UTF-8 encoding, one character can occupy in memory more then one
byte, so to store it we have to use a string. What we finally have in AL-IV.

In the AL-IV each string character is a substring. So, extracting a symbol
using operation like S[n], we actually call the function S.Substring(n, 1).

Because records are introduced into the language only to allow data
aggregation without dynamic data allocations. And these guarantee that a
structure is always a single references so when the control flow leave its
scope, it immediately releases the occupied memory.

Records are intermediate data types between simple data types and classes.
From one side these contain separate fields (and passed to functions by
reference actually). From another side these are assigned like simple variables
(just copying its content) and can not be modified in functions where these are
passed as parameters (i.e. these are always passed as constant values, in
notation of C++/Java/Pascal - const).

In the AL-IV it is not possible to work with pointers to structures or its
parts.

An absence of pointers and addressing arithmetic essentially increases code
safety. Indexing of items in arrays is much more safe operation since the
compiler have an information which object (array) code is accessing, and it can
provide a control on its bounds exceeding, at least at run time.

a. Short names

It is possible to use short names of variables to shorten code. As well in
earlier days when programmers used very short (one- two- letters) names for
variables and this was not a crime. Only the difference is what the compiler
demands you to provide also a long version of the name adding symbols following
the '|' sign to fulfill it to at least 8 characters. So if the reader desires
to understand what the variable is purposed to (s)he can go to its declaration
and read its whole name. Or, in case of a special IDE, just click on the name
to get is declaration shown as a hint.

b. Prefix functions calls

It is possible to minimize amount of parenthesis replacing classic call of
functions to the prefix form. E.g.:
s.Replace_all(",", ".").Trim.Remove_ending(".").TrimR.Find_last("_")

Compare to:
Find_lastTrimR(Remove_ending(Trim(Replace_all(s, ",", ".")), ".")), "_")

The first version (prefix) is shorter a bit and much more understandable.
Though both variants are correct in AL-IV.

c. Removing surplus checks

It is not necessary to check always if the object variable is null (in case
of the AL-IV, is NONE). The AL-IV compiler add all necessary checks itself, and
in case of the NONE value calling its methods or reading/writing fields does
not lead to exceptions or other kinds of failures. In most cases while reading
values the NONE value of a correspondent type is obtained (0 / "" / FALSE in
case of numbers / strings / BOOL values), and nothing done in case of writing.

Also it is not necessary to think about zero division, or operations with
NaN operand (the NaN will be returned). If you do not like the result obtained
you can make efforts to find a reason and to fix it, but there are no other
faults like application crash should occur.

Page 48 from 51

28.12.202248

So, in most cases it is enough to write for example:
CASE sender.{Paint_table}.Count > 0 ?

rather then
CASE sender.{Paint_table} != NONE
 && sender.{Paint_table}.Count > 0
 ?...
And the first variant is much more readable, yeh?

You also do not need to take into account possible zero divisions or
calculating results on base of NaN operands. In such case, just NaN will be
returned. An application crash is not provided. If a value obtained is not
satisfying you, try to find a reason of a failure and fix it. But this is
exactly is not a reason to crash entire application at all.

d. LIKE statements

In many cases it is not necessary to do refactoring while code writing only
just to reuse a piece of code already written several lines above. Yes,
certainly, it is possible to re-design it as a separate function, to come up
with a name for it, to guess how to pass parameters to it etc. and all these
just to call it a couple times.

In case of the AL-IV it is just possible to bound the code selected to re-
write with comments:

--------------- 'do not want to write again', REUSED
...
--------------- 'end'

and later to "call" it:

LIKE.......... 'do not want to write again'

This is looking and working like a macros (which certainly is very bad if
this would be a C language) but without any possibility to organize
nesting LIKE's or going out of the class code.

e. Formatting block statements

There are not block begin/end or {...} brackets. This allows to economy a
couple of lines of code on each nesting block of code. Code becomes compact
like the Python but there are no problems there in case when code is
reformatted since only ending ';' symbols are defining actual nesting level.

When going onto new line of code there are no special characters
contaminating the source. It is sufficient to follow some simple rules like
write '(', '[', ',' at the end of a line interrupting or to continue on new
line with some operations like '+', '-' etc.

f. Declaring local variables

Local variables are declaring at points where those are assigned first
time, in most cases. And (this is important and really differs from the most of
known programming languages) these are visible to the end of the function,
independently of the nesting level of the block code where the variable was
declared. If for some reasons code do not achieve the block where the variable
was declared, anyway in all the code below the variable can be safely accessed
with the NONE (or 0, or "", or FALSE etc.) value assigned to it in any case.

The only lack is in case when the variable is used to accumulate some value
(counter, or collection) in a nested loop which can be run twice or more:
certainly, in such case the variable should be initialized before entering the
nesting loop. If you forget to do so this can brake your algorithm (but not to
crash the application).

g. Automatic releasing of objects no more used

For the most of modern languages this is not the discover. But the AL-IV
does not require the garbage collector. This allows to compile code for
systems/ target languages/ platforms which do not have one (e.g. Delphi32/ Free
Pascal) and still to have the automatic objects releasing on zeroing reference
counters on them.

This also makes code shorter still it is not necessary to provide a code
releasing objects manually.

Content
Introduction

Page 49 from 51

28.12.202249

• Important semantic things of the language are:

• Important syntax things of the language are:

• The language has lack of:

• I. 1. Formatting statements

◦ I. 1. a. Continue statement lines

◦ I. 1. b. Block statements

◦ I. 1. c. Comments

◦ I. 1. d. Case sensitivity for keywords, types and other identifier
s

◦ I. 1. e. Naming

◦ I. 1. f. Modifiers

• I. 2. Assignment

◦ I. 2. a. Simple assignment statement

◦ I. 2. b. Assignment in combination with arithmetic, logic or bitwi
se operation

◦ I. 2. c. Data sending operations

◦ I. 2. d. Repeating assignment and sending data operators

• I. 3. Expressions

◦ I. 3. a. Checking the presence of an item

• I. 4. Other simple statements

• I. 5. Conditional statement CASE

• I. 6. FOR loop statements

◦ I. 6. a. About assigning a value to a loop variable:

• I. 7. PUSH statements block

• I. 8. DEBUG statements block

• I. 9. SILENT statements block

• I. 10. LIKE statement

• I. 11. REVERT statement

• II. 1. Simple data types

◦ II. 1. a. Names of data types, data types classification

◦ II. 1. a. Writing constants of base data types

◦ II. 1. c. Enumerations

• II. 2. Variables and arrays

◦ II. 2. a. Declaration of variables

◦ II. 2. b. Field modifiers

◦ II. 2. c. Named constants declaration

◦ II. 2. d. Arrays declaration

◦ II. 2. e. Array constructor

◦ II. 2. f. Using arrays

• II. 3. Functions

◦ II. 3. a. Function header

◦ II. 3. b. Function body

◦ II. 3. c. Calling functions

• III. 1. Classes

◦ III. 1. a. Class declaration

◦ III. 1. b. Class modifiers

◦ III. 1. c. Import section

◦ III. 1. d. Inheritance

◦ III. 1. e. Objects. Strong and weak references

◦ III. 1. f. Fields

◦ III. 1. g. Methods

• III. 2. Working with objects of classes

◦ III. 2. a. Creating an object instance

• III. 3. Other class level operators

• III. 4. Ending class. History of changes. DATA[] array.

• IV. 1. Declaration of a structure

• IV. 2. Working with structures

Page 50 from 51

28.12.202250

• IV. 3. About structures implementation in the final code

• V. 1. General rules

• V. 2. Syntax

• VI. 1. SQL queries encoding

• VI. 2. Database tables structure. TABLE operator

• VI. 3. SQL-like syntax

• VI. 4. Executing queries INSERT, UPDATE, DELETE

• VI. 5. Getting results of SELECT statements

• VI. 6. Transactions

• VI. 7. Syntax diagrams

• VII. 1. Localization of string resources

• VII. 2. Localization of the language keywords

• VII. 3. STORE - hidden parameters

• VII. 4. Abandoned and deprecated classes, structures, enumerations, field
s, functions

• VII. 5. Restrictions to parameter values

• VII. 6. Infinitive loop control

• VII. 7. Code optimizations. INLINE insertions

• VII. 8. Code optimizations. UNROLL for FOR loops

• VII. 9. Syntax sugar

• VII. 10. Short help on "embedded" functions

• VII. 11. Generic functions

• VII. 12. Indexing methods .[] - multi-dimensional arrays

• VII. 13. Operators

• VII. 14. Multi-threading

• VI. 15. Native (low-level) functions

• VIII. 1. Real multi-platform support

• VIII. 2. Safety

• VIII. 3. Why new syntax?

• VIII. 4. Where is "while" loop statement?

• VIII. 5. Why new memory management rules?

• VIII. 6. Why embedded SQL statements?

• VIII. 7. Why there are no possibility to control which precision to use f
or (numeric) variables?

• VIII. 8. Where is CHAR data type?

• VIII. 9. Why there are no pointers to STRUCTUREs?

• VIII. 10. Code brittleness

◦ a. Short names

◦ b. Prefix functions calls

◦ c. Removing surplus checks

◦ d. LIKE statements

◦ e. Formatting block statements

◦ f. Declaring local variables

◦ g. Automatic releasing of objects no more used

Content

Home

Page 51 from 51

28.12.202251

